AS-1498

B.C.A. (Part—I) Semester—I Examination DIGITAL TECHNIQUES—I

Paper-1 ST 3

Time: Three Hours]

[Maximum Marks: 60

N.B.: — Draw neat diagrams wherever necessary.

EITHER

- 1. (A) Explain following gates with truth tables:
 - (i) AND gate
 - (ii) OR gate
 - (iii) NOT gate.

6

- (B) Perform the following conversions:
 - (i) $(0.1256)_{10} \rightarrow ()_2 \rightarrow ()_8$
 - (ii) $(320.14)_8 \rightarrow (\)_{10} \rightarrow (\)_{16}$
 - (iii) $(7A.3B5)_{16} \rightarrow ()_2 \rightarrow ()_8$

6

OR

- (P) Why NAND and NOR gates are called universal gates? Explain with examples. 6
- (Q) Subtract following numbers using 2's complement method :
 - (i) $(101011)_2 (101111)_2$
 - (ii) $(1101)_2 (1001)_2$
 - (iii) $(100011)_2 (000011)_2$

6

VTM-13446

1

(Contd.)

EITHER

(A) Explain the construction and working of TTL NAND gate. 6 2. 3

(B) Explain CMOS inverter.

(C) Explain:

- (i) Noise immunity
- (ii) Propagation delay.

OR

- (P) Draw 3-input DTL NAND gate and explain its working. 6
- (O) Differentiate between CMOS and TTL. 3
- (R) Explain the terms:
 - (i) Fan-in
 - (ii) Fan-out.

EITHER

- 3. (A) State and prove De Morgan's theorem.
 - (B) Prove the following Boolean equations and draw the logic diagrams:

(i)
$$\overline{AB + BC + CA} = (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{A})$$

(ii)
$$(\overline{A} + \overline{B}) = \overline{A} \cdot \overline{B}$$
.

OR

(P) Reduce the following equation using K-map

$$f(A, B, C, D) = \Sigma m(0, 1, 2, 8, 9, 10, 15).$$

- (Q) State the following Boolean laws:
 - (i) Commutative law
 - (ii) Distributive law.

(R) Implement the following equation using logic gates:

$$Y = \overline{A} B C \overline{D} + \overline{A} \overline{B} \overline{C} D + A B \overline{C} \overline{D} + \overline{A} \overline{B} C D + \overline{A} B \overline{C} D$$

VTM-13446

2

(Contd.)

3

3

6

5

3

www.sgbauonline.com

EITHER

4.	(A)	Explain the working of full adder circuit with truth table,	6
	(B)	Draw logic diagrams of half and full subtracter.	6
	OR		
	(P)	Explain the construction and working of 4-bit parallel adder.	6
	(Q)	Explain controlled 4-bit parallel adder/subtractor with 2's complement method.	6
	EIT	THER	
5.	(A)	What is decoder? Explain 2: 4 decoder.	4
	(B)	What is demultiplexer? Explain 1:16 demultiplexer.	4
	(C)	Differentiate between multiplexer and demultiplexer.	4
	OR		
	(P)	What is multiplexer? Explain 4:1 multiplexer.	6
	(Q)	Explain 1: 4 demultiplexer.	4
	(R)	Draw logic diagram of 3: 8 decoder.	2

www.sgbauonline.com