AU-185

B.C.A. (Part-I) Scmester-I Examination DIGITAL TECHNIQUES—I Paper—1ST3

Time: Three Hours] [Maximum Marks: 60

Note: — Draw neat diagrams wherever necessary.

EITHER (A) Explain binary and hexadecimal number systems with examples. 1. 6 (B) Perform the following conversions: (i) $(FCB)_{16} \rightarrow (?)_{19} \rightarrow (?)_{8}$ (ii) $(31.14)_{10} \rightarrow (?), \rightarrow (?)_8$ (iii) $(6F2D.12)_{16} \rightarrow (?)_2 \rightarrow (?)_8$ 6 OR (P) Explain AND, OR and NOT gates with truth tables and symbols. 6 (Q) Explain the subtraction using 2's complement method. 6 **EITHER** 2. (A) Explain the construction and working of TTL NAND gate. 6 6 (B) Explain the DTL logic with circuit diagram. OR (P) Explain the terms: (i) Propagation delay (ii) Noise immunity (iii) Fan-in. 6 (Q) Explain the working of CMOS NAND gate. 6

(Contd.) VOX--35331 1

www.sgbauonline.com

EITHER

- 3. (A) State and prove DeMorgan's theorem.
 - (B) Prove that:
 - (i) $A + \overline{A}B = A + B$
 - (ii) $A + (BC) = (A + B) \cdot (A + C)$

OR

(P) Draw the K-map and simplify the following Boolean expression :

$$f(ABCD) = \Sigma m(0, 1, 3, 5, 7, 8, 10, 11, 13, 15).$$

(Q) Explain pair of 1's, quad of 1's and octet of 1's in K-map.

EITHER

- 4. (A) Explain half adder and full adder with logic diagram.
 - (B) Explain the working of full subtractor with logic diagram.

OR

- (P) Explain the construction and working of 4-bit parallel adder.
- (Q) Draw logic diagrams of 4-bit binary adder and explain.

EITHER

- 5. (A) What is decoder? Explain 3: 8 decoder with logic diagram.
 - (B) What is demultiplexer? Explain 1:16 MUX.

OR

- (P) What is multiplexer? Explain 16:1 MUX.
- (Q) Explain 4: 16 decoder with logic diagram.

6

6

6

6

6

6

6

6

6

6

6