AU-187

(Contd.)

B.C.A. (Part-I) Semester-I Examination

DISCRETE MATHEMATICS

Paper—1ST5

Time: Three Hours] [Maximum Marks: 60 Note:—(1) ALL questions are compulsory. Attempt ONE question from each unit. UNIT-I (a) If A and B are finite sets then prove that: 1. $n(A \cup B) = n(A) + n(B) - n(A \cap B).$ 3 (b) Let $f: A \to B$ and $g: B \to C$. If f and g are one-one then prove that $g \circ f$ is one-one. 3 (c) Amongst the integer 1 to 300, find how many are not divisible by 3 nor by 5. 6 (a) Let A and B be countable sets. Then prove that $A \cup B$ is countable. 6 2. (b) Define permutation and combination with example and prove that : ${}^{n}C_{r} = {}^{n}C_{n-r}$ 6 UNIT-II (a) Find the coefficient of x^{25} in expansion of $(x^3 + x^4 + x^5 + \dots)^5$. 6 3. (b) Define Ferrer's and conjugate Ferrer's diagram and draw both for 9 + 5 + 3 + 2. 6 (a) (i) Find the sequence for the exponential generating function for $(1 + x)^{-1}$. 3 4. (ii) Let A(x), B(x) and C(x) are ordinary generating functions, if $c_n = \alpha a_n + \beta b_n$ then prove that $C(x) = \alpha A(x) + \beta B(x)$. 3 (b) Define probability generating function and prove that $E(x) = P'_{x}(1)$. 6

ļ

www.sgbauonline.com

VOX-35333

www.sgbauonline.com

UNIT--III

5.	(a)	Solve the	Fibonacci	relation	a_ =	a	+ a,	, with	initial	conditions a	$t_n = 0$,	a,	=	1.	6
----	-----	-----------	-----------	----------	------	---	------	--------	---------	--------------	-------------	----	---	----	---

- (b) Find the total solution of $a_r 6a_{r-1} + 9a_{r-2} = 4$.
- 6. (a) Let a_n be the number of region into which the plane is decomposed by n straight lines.
 No two of which are parallel, no three of which are concurrent. Find the recurrence relation for a_n.
 - (b) Find the homogeneous solution of the recurrence relation:

$$4a_{r} - 20a_{r+} + 17a_{r+} - 4a_{r-3} = 0. ag{6}$$

UNIT--IV

- 7. (a) State Duality Principle. Find the duals of the following:
 - (i) $(a \wedge b) \ge \overline{b}$
 - (ii) $(a \lor b) = (\overline{b \lor a})$
 - (iii) $a \ge (\overline{b \lor c})$
 - (iv) $(\overline{a \vee b}) = 1$
 - (v) $a \ge 0$

(vi)
$$\overline{a} \le 0$$
.

- (b) Define Partial order set and prove that $(\rho(A), \subseteq)$ is Partial order set.
- 8. (a) Test whether following is Tautology or contradiction:
 - (i) $(p \land q) \rightarrow (p \lor q)$
 - (ii) $(p \wedge q) \wedge (\sim p \vee \sim q)$

(iii)
$$p \land (p \rightarrow q)$$

(b) Prove that:

$$(a \wedge b) \wedge c \equiv a \wedge (b \wedge c).$$

VOX—35333 2 (Contd.)

UNIT-V

- 9. (a) Prove that in distributive lattice if an element has a complement then this complement is unique.
 - (b) In any Boolean algebra, show that (a + b')(b + c')(c + a') = (a' + b)(b' + c)(c' + a).
- 10. (a) In a Lattice if $a \le b$ and $c \le d$, then prove that :
 - (i) $a \wedge c \leq b \wedge d$
 - (ii) $a \lor c \le b \lor d$
 - (iii) $a \lor o = a$
 - (b) Let B is the set of statements from closed under \land , \lor and \sim . Show that \lt B, \land , \lor , \sim , C, t \gt is Boolean algebra, where C is contradiction and t is tautology.

www.sgbauonline.com