B.C.A. (Part—I) Semester–I Examination NUMERICAL METHODS

Paper—1ST4

Time	: Tł	ree Hours] [Maximum Marks : 0	60
Note	· ;	(1) All questions are compulsory.	
		(2) All questions carry equal marks.	
1.	(a)	Explain Digital Computing.	4
	(b)	What are the different phases involved in numerical computing?	4
	(c)	What do you mean by mathematical model? How will you formulate it?	4
		OR	
2.	(a)	Distinguish between analog computing and digital computing.	4
		Explain new trends in numerical computing.	4
	(c)	Describe with the help of block diagram, the process of Numerical Computing.	4
3.	(a)	Round off the following numbers correct upto 4 significant digits:	
		(i) 6.5086	
		(ii) 0.42084	
		(iii) 0.005692	
		(iv) 0.89694,	4
		Explain the concept of significant digit with example.	4
	(c)	Explain the concept of Inherent errors.	4
		OR	
4.	(a)	Differentiate inherent error and numerical error in numerical computing.	4
	(b)	State and explain errors involved in numerical computing. Explain any one of them.	4
_	(c)	State and explain triangular in equality as applied to error propogation.	4
5.	(a)	Explain false position method to find roots of an equation $f(x) = 0$.	6
	(b)	Find roots of the following equation by using bisection method:	,
		$3x^3 - 6x - 13 = 0.$	6
6	(0)	OR Find anothically the mustice must of an equation :	
6.	(a)	Find graphically the positive root of an equation : $x^3 + 3x - 5 = 0$.	6
	(b)	Find root of the following equation by using false position method:	U
	(0)	$f(x) = x^3 - x + 4 = 0.$	6
7.	(a)	Derive the formula to find the roots of the equation in Secant method.	4
/.	(b)	Explain the procedure how you will obtain root of the equation by fixed point iterati	
	(0)	method.	4
	(c)	What are the limitations of Newton Raphon Method ?	4
	(-)	OR	
8.	(a)	Obtain roots of equation $f(x) = x^3 + 3x + 5$ by using Newton Raphon Method.	6
		Obtain roots of equation $f(x) = x^3 - x + 4 = 0$ by using Secant method.	6
9	(a)	Solve the following system of equation by using Gauss Jordan method:	
		2x - 3y + 4z = 8	
		x + y + 4z = 15	
		3x + 4y - z = 8.	8
	(b)	Explain the Gauss Elimination by partial pivoting method.	4
		OR	
10.	(a)	Solve the following system of equations by Gauss Elimination method:	
		$2x_1 + 3x_2 + x_3 = 9$	
		$x_1 + 2x_2 + 3x_3 = 6$	
	<i>a</i> .	$3x_1 + x_2 + 2x_3 = 8$	8
	(b)	Explain the basic concept in the Gauss Jordan method.	4