
Find all spanning tree of the following graph.

UNIT - V

a) Find shortest spanning tree by using Krushkal's algorithm.

- Prove that on arborescence is a tree in which every vertex other than the root has an in-degree of exactly one.
- 10. a) Draw the figure of a directed graph given formally as V(G)={A, B, C, D}
 E (G)={(A,D), (B,A), (B,A) (D,B), (B,C), (D,C), (B,B)} Find indegree and outdegree of each of the vertex.
 - b) Define: i) Arborescene.
 ii) Spanning tree iii) Network.

AL-0526 4 213/1025

B.C.A.(Part-I) Second Semester

Discrete Mathematics - II

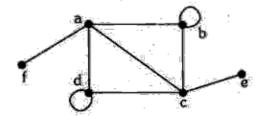
Paper- 2 ST 5

P. Pages: 4

Time: Three Hours

Max. Marks: 60

Note: 1. All questions carry equal marks.


2. Attempt one question from each unit.

UNIT - I

1. a) Define:

6

- i) Directed graph.
- i) Finite graph.
- iii) Null graph. with example of each.
- Define adjacency matrix and find adjacency matrix from the following graph. Also write observation.

AL - 0526

1

P.I.U

- a) Show that maximum number of edges in a complete graph with n vertices are n(n-1)/2.
 - Verify Havel-Halcimi theorem for degree sequence (2, 2, 4, 3, 1)

UNIT - II

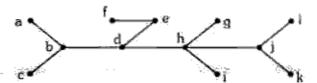
- a) State Menger theorem in vertex form and edge form.
 - b) Show that vertex connectivity of any graph G can not exceed the edge connectivity of G.
 6
- a) Prove that every cut set in a non-separable graph with more than two vertices contain at least 2 edges.
 - b) Prove that an edge e of a graph G is isthmus or bridge if and only if it does not belonging to any circuit.

UNIT - III

- 5. a) Give an example of a graph which is
 - Eulerian and Hamiltonian.
 - ii) Neither Hamiltonian nor Eulerian.
 - iii) Eulerian but not Hamiltonian.
 - iv) Hamiltonian but not Eulerian.

AL - 0526

2


- Prove that an Euler graph G is arbitrary traceable from vertex V in G iff every circuit in G contains V.
- a) Show that following graph is Eulerian and trace Eulerian circuit by using Fluery's algorithm.

 Prove that a graph is Eulerian if and only if degree of each vertex is even.

UNIT - IV

- a) Define spanning tree and prove that every connected graph has atleast one spanning tree.
 - Prove that a graph is tree if and only if there exists only one path between every pair of vertices.
- a) Find the center and radius of the following tree.

AL - 0526

3

P.T.O.

6

6