B.E. Fifth Semester (Civil Engineering) (CGS)

Fluid Mechanics - II: 5 CE 02

P. Pages: 3

Time: Three Hours

AU - 3529

Max. Marks: 80

Notes: 1.

- All question carry marks as indicated.
- Answer three question from Section A and three question from Section B.
- Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- 5. Diagrams and chemical equations should be given wherever necessary.
- Illustrate your answer necessary with the help of neat sketches.
- Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. a) Derive an expression for the velocity distribution for turbulent in smooth pipes.

7

b) What is meant by smooth boundary and rough boundary.

6

8

OR

A smooth pipe of 80 mm diameter and 100 m long is carrying water at the rate of 9 lit/sec. If kinematics viscosity of water is 0.015 stokes and value of co-efficient of friction 'f' is given by the relation $f = \frac{0.0791}{(Re)^{1/4}}$.

where, Re is Reynold's number.

Calculate:

http://www.sgbauonline.com

- Loss of head.
- ii) Wall shearing stress.
- iii) Centre line velocity.
- iv) Velocity and shear stress at 25 mm from the pipe wall and
- v) Thickness of laminar sublayer.
- b) In rough pipe of dia. 0.8 m and length 4500 m water is flowing at the rate of 0.9 m³/s. If the average height of roughness is 0.5 mm, find the power required to maintain this flow.
- a) State the conditions under which the rectangular section of an open channel will be most economical. Derive these conditions.
 - b) In a rectangular channel of 0.6 m width a hydraulic jump occurs at a point where depth of water flow is 0.20 m and froude number is 2.5.

Determine:

- Specific energy.
- ii) The critical and subsequent depth.
- iii) Loss of head.
- iv) Energy dissipated.

OR

P.T.O

- 4. a) Prove that the critical flow in a channel.
 - i) The kinetic head is equal to half the hydraulic depth, and
 - ii) Critical depth is equal to two third of minimum specific energy.
 - b) Design an earthen trapezoidal channel for water having a velocity of 0.6 m/s, side slope of channel is 1:1.5 and quantity of water flowing is 3 m³ / sec. Assume C in Chezy's formula as 65.
- 5. a) A sluice gate discharges water into a horizontal rectangular channel with velocity of 6 m/sec and depth of flow 0.08 m. The width of channel 7.8 m. Determine whether a hydraulic jump will occur and find its height and loss of energy per kg. Also determine power lost in hydraulic jump.
 - b) State the various assumptions made while analysing the gradually varied flow.

OR

6. a) Show that for hydraulic jump in a horizontal rectangular channel,

$$F_2 = F_1 \left[\frac{y_1}{y_2} \right]^{3/2}.$$

b) In a rectangular channel 13 m wide and 3.8 m deep water is flowing with a velocity of 1.2 m/s. The bed slope of the channel is 1 in 4000. If flow of water through the channel is regulated in such a way that energy line is having a slope of 0.004. Find the rate of change of depth of water in channel.

SECTION - B

- 7. a) State Buckingham's π theorem. Show that the velocity through circular orifice is given by $V = \sqrt{2gH} \cdot \phi \left[\frac{D}{H}, \frac{\mu}{\rho.V.H} \right].$
 - b) What is mean by repeating variables? How are the repeating variables selected in dimensional analysis?

OR

- 8. a) The performance of spillway in an irrigation project is to be studied by means of model constructed to a scale of 1:10. Determine:
 - i) Rate of flow in model for a prototype discharge of 1500 m³ / sec.
 - Dissipation of energy in prototype hydraulic jump, if the pump in model dissipates 0.33 kW.
 - b) Explain:
 - i) Geometric similarity
 - Kinematic similarity
 - Dynamic similarity
- 9. a) Show that for a series of flate plates mounted on a periphery of a wheel and jet striking normally on each plate in succession, the max. efficiency never exceeds 50%.
 - b) Draw a neat sketch of Pelton wheel turbine and describe its working.

7

7

7

6

7

7

6

6

nttp://www.sgbauonline.com

OR

- 10. a) A jet water of 70 mm diameter strikes a curved vane at its centre with a velocity of 18 m/s. The curved vane is moving with a velocity of 8 m/s. in the direction of jet. The jet deflected through an angle 165°. Assuming the plate to be smooth find,
- 7

- i) Force on the plate in the direction of jet.
- ii) Power of jet.
- iii) Efficiency of jet.
- b) Derive an expression for the force exerted by a jet of water on a stationary curved plate when
- 7

- i) Jet strikes the curved plate at centre.
- ii) Jet strikes the curved plate at one end tangentially when the plate is symmetrical.
- 11. a) What is priming & why it is necessary.

6

8

- b) A double acting reciprocating pump has a stroke of 25 cm and a piston diameter of 10.5 cm. The centre of the pump is 4 m above the level of water in the sump and 30 m below delivery water level. The lengths of suction & delivery pipes are 6.5 m and 34.5 m respectively and their diameters are both 10 cm. Take friction factor of pipes f = 0.04. If pump is working at 30 r.p.m. Find the pressure head in meters of water on piston at
 - beginning of suction stoke.
 - ii) middle of suction stoke &
 - iii) end of suction stoke.

OR

12. a) Define specific speed of a centrifugal pump. Derive an expression for the same.

7

attp://www.sgbauonline.com

b) A centrifugal pump lifts water against a static head of 30 m. The major loss of head in suction and delivery pipe is 0.8 m and 2.8 m respectively. The impeller is 300 mm in dia and 25 mm wide at outlet. It reloves at 1325 rpm and blade angle is 35° at exist. Determine the discharge of the pump and power required to drive the pump, if manometric efficiency is 74%.

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

AU - 3529