AU - 2639

Fifth Semester B. E. (Civil Engineering) Examination

FLUID MECHANICS-II

Paper - 5 CE 02

(USC - 10191)

P. Pages: 4

Time: Three Hours]

Max. Marks: 80

attp://www.sgbauonline.com

- Note: (1) Separate answer book must be used for each section in the subject Geology. Engineering material of civil branch and Separate answer book must be used for Section A and B in Pharmacy and Cosmetic Tech.
 - (2) Answer Three questions from Section A and Three questions from Section B.
 - (3) Assume suitable data wherever necessary.
 - (4) Illustrate your answer wherever necessary with the help of neat sketches.

SECTION A

- 1. (a) What is meant by smooth transition and rough boundary? Give the corresponding crateria obtained by Nikuradse experiment.
 - (b) A pipe of 120 mm diameter is carrying water. The velocities at the pipe centre and 2cm from the pipe centre are 2.5 m/s and 1.8 m/s respectively and flow in the pipe is turbulent. Calculate the wall shear stress.

OR

- 2. (a) The water is flowing through a 10 cm diameter rough pipe. Measurement made by pitot tube indicates that the velocity at a point 3 cm from the pipe wall is 35% move than the velocity at a point 1 cm from pipe wall. Make calculations for avg. height of roughness projections.
 - (b) Derive the expression for velocity distribution for turbulent flow in smooth pipe.
- (a) What is meant by most economical channel sectⁿ? Derive the conditions for most economical trapezoidal channel sectⁿ.

P.T.O.

http://www.sgbauonline.com

(b)	A rectangular	channel	4	m	wide	conveys	20	m³/s	of	water	at	a	depth	of
	2.2 m													

Calculate:

- (i) Specific energy of flowing fluid.
- (ii) Critical depth, critical velocity and minimum specific energy.
- (iii) State whether the flow is subcritical or supercritical.

7

OR

- (a) Determine the dimensions of the most economical trapezoidal channel section to carry a discharge of 15 m³/s at a slope of 5 in 10000. Take Chezy's constant as 70.
 - (b) Define specific energy. Draw and explain specific energy diagram. 6
- (a) What is meant by hydraulic jump? Derive an expression for loss of energy head for hydraulic jump.
 - (b) A rectangular channel 8 m wide discharges 1000 lit/sec of water with mean velocity of 6.0 m/s. What is the height of jump? Also determine efficiency of jump as well as energy lossed in jump.

OR

- (a) A rectangular channel 4 m broad has a bed slope of 1 in 1000 and under original condition depth is 1.5 m. The dam was placed across a channel increasing the depth at the dam to 2.1 m. Calculate the depth of flow at 100 m upstream, take Chezy's constant as 60.
 - (b) Derive a dynamic equation for gradually varied flow. Also give the assumptions.

7

SECTION B

(a) State Buckingham's π theorem. Explain the rules for selection of repeating variables in dimensional analysis.

AU-2639

http://www.sgbauonline.com

- (b) A spillway model is to be built to a geometrically similar scale of 1/100 across a flume of 500 mm width. The prototype is 20 m high and maximum head on it expected to be 1.8 m.
 - (i) What height of model and what head in model should be used?
 - (ii) If flow over model at perticular head is 20 lit/sec. What flow per meter length of prototype is expected?
 - (iii) If negative pressure in model is 0.3 m, what is the negative pressure in prototype? Is it practicable?

OR

8. (a) Show that resistance R to the motion of sphere is given by:

$$R = pV^2 D^2 \phi [\frac{\mu}{VD} \varrho],$$

where,

D = diameter of sphere

V = velocity

 ϱ = fluid density and μ = viscosity.

8

http://www.sgbauonline.com

- (b) State the applications of model and dimensional analysis.
- 6
- (a) Draw a neat sketch of Pelton wheel turbine and explain its components and working.
 - (b) Define momentum principle applied to free jet striking a plate. A nozzel of 40 mm diameter delivers water at 30 m/s, perpendicular to a plate that moves away from jet 5 m/s.

Find:

- (i) Force on plate,
- (ii) Work done,
- (iii) Efficiency of the jet.

7

P.T.O.

OR

10. (a) Find the expression for work done and efficiency by the jet on moving curved plate. Assuming the jet is striking the plate at its centre.

AU-2639 3

- (b) A jet of water of diameter 50 mm moving with a velocity of 30 m/s strikes a fixed plate in such away that the angle between jet and the plate is 60°. Find force exerted by the jet on the plate.
 - (i) In the direction normal to the plate and.
 - (ii) In the direction of jet.

7

11. (a) Explain the working of double acting reciprocating pump with neat sketch.

6

(b) A centrifugal pump delivers water against a head of 12 m and design speed of 950 r.p.m. The vanes are set back to an angle of 30° with periphery. The diameter of impeller is 350 mm and outlet width is 60 mm. Determine the discharge of the pump if manometric efficiency is 70%.

OR

- 12. (a) A single acting reciprocating pump has cylinder diameter 150 mm and stroke length 350 mm. The section and delivery heads are 3 m and 10 m respectively. The pump is running at 100 r.p.m. and delivers 0.008 m³/s of water. Determine:
 - Theorotical discharge.
 - (ii) Co-efficient of discharge.
 - (iii) Percentage slip of pump.
 - (iv) Power required to run the pump.

7

nttp://www.sgbauonline.com

(b) Explain the working of hydraulic ram.

6

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

AU-2639

4

180