4. If $x(n) = \{1, 2, -1\}$, h(n) = x(n) then find convolution sum.

7

Sketch and determine convolution sum of given signals: b)

6

- $x(n) = \{1, 2, 3, 1\} \& h(n) = \{\frac{1}{4}, 2, 1, -1\}.$
- 5. a) What are the advantages of z-transform? Classify Z-transform.

- 8
- What do you understand by region of convergence? Explain the significance of ROC. b)
- 6

OR

- 6. It is given that $x_1(n) = \{1, 2, 3, 4, 0, 1\}$ using time shifting property, find Z.T. of $x_2(n)$ 8 where $x_2(n) = \{1, 2, \frac{3}{4}, 4, 0, 1\}$.
 - b) Determine Z.T. including ROC of the following signal as $x(n) = \left(\frac{1}{2}\right)^n \{u(n) - u(n-10)\}$.
- 7. Compute DFT of sequence given as a)
 - nttp://www.sgbauonline.com

b) Explain DIFFT algorithm in detail with neat flow diagram for N=8.

 $x(n)=(-1)^n$ for (i) N=3 & (ii) N=4.

OR

8. The first five point of 8-point DFT of a real valued sequence area) $\{0.25, 0.125 - j0.3018, 0, 0.125 - j0.0518, 0\}$ Determine remaining 3-points.

- Using graphical method obtain a 5 point circular convolution of two DT signals defined b)

$$x(n)=(1.5)^n \quad 0 \le n \le 2$$

$$y(n) = 2n - 3 \ 0 \le n \le 3$$

Does the circular convolution obtained is same to that of linear convolution?

- Explain how an analog filter is converted into equivalent digital filter using Bilinear 9. a) Transformation.
- 7

6

b) Design an ideal low pass filter with frequency response.

$$H_d(\omega) = 1$$
 $-\pi/2 \le \omega \le \pi/2$

$$=0$$
 $\pi/2 \le |\omega| \le \pi$

For N = 11 by (i) Rectangular (ii) Triangular

OR

Explain the frequency sampling method of designing the FIR filter. 10.

7

B.E. Eighth Semester (Computer Engineering) (CGS)

10293: Digital Signal Processing: 8 KE 01

P. Pages: 3

nttp://www.sgbauonline.com

Time: Three Hours

AU - 3019

Max. Marks: 80

Notes:

- Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- Illustrate your answer necessary with the help of neat sketches.
- Use of pen Blue/Black ink/refill only for writing the answer book.
- a) Draw and explain the block diagram of digital signal processing system. State the advantages of DSP over ASP.
- 7

6

b) Explain the various operations that can be performed on discrete time signals. Why folding shifting is not equal to shifting folding?

OR

a) Solve for periodic or aperiodic:

6

- i) $x(n)=e^{j6\pi n}$
- ii) $x(n) = \cos\left(\frac{2\pi}{3}\right)n$.
- iii) $x(t) = \cos^2(2\pi t)$.
- b) Sketch the signal x (n) and find out the response of following signal asx(n)=|n| $-3 \le n \le 3$

7

7

- 0
 - = 0 otherwise

Find out -

 $i) \quad y(n) = x(n)$

ii) y(n) = x(n-1)

- iii) y(n) = x(2-n)
- 3. a) Consider the interconnection of LTI system as shown below:

 $h_1(n)$ $h_2(n)$ $h_3(n)$ $h_4(n)$

Determine h (n) when:

$$h_1(n) = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{2} \right\}$$

$$h_2(n) = h_3(n) = (n+1)u(n).$$

b) State and prove the necessary and sufficient condition for LTI system to be stable.

6

OR

P.T.O

- b) Determine impulse response h (n) of a filter having desired frequency response. $H_d\left(e^{j\omega}\right) = e^{-j(m-1)\omega/2}..... \quad 0 \le \omega \le \pi/2$
 - 6

- =0 $\pi/2 \le \omega \le \pi$
- 11. a) Obtain the cascade and parallel realization of

$$II(z) = \frac{2(1-z^{-1})(1+\sqrt{2}z^{-1}+z^{-2})}{(1+0.5z^{-1})(1-0.9z^{-1}+0.81z^{-2})}$$

7

b) Determine the lattice-ladder realization for-

$$H(z) = \frac{1 - z^{-1}}{1 - (2r\cos w_0)z^{-1} + r2z^{-2}}$$

What happens if r = 1?

OR

12. a) Consider the Pole-zero system with system function:

$$H(z) = \frac{\left(1 - 0.5 \ e^{j\pi/4} \cdot z^{-1}\right) \left(1 - 0.5 \ e^{-j\pi/4} \cdot z^{-1}\right)}{\left(1 - 0.8 \ e^{j\pi/3} \cdot z^{-1}\right) \left(1 - 0.8 \ e^{-j\pi/3} \cdot z^{-1}\right)}$$

Sketch the regular and transpose direct form-II realization of the system.

b) Draw the direct form - I and parallel realization of-

nttp://www.sgbauonline.com

$$y(n)=y(n-1)-\frac{1}{2}y(n-2)+x(n)-x(n-1)+x(n+2).$$

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्य,

Paytm or Google Pay 🛪