7

B.E. Fourth Semester (Elect. Engineering (Elect. & Power Elect.)) (CGS) 10545 : Mathematics - IV : 4 EP 04 / 4 EL 04 / 4 EE 04

P. Pages: 3

nttp://www.sgbauonline.com

Time: Three Hours

AU - 2583

Max. Marks: 80

Notes:

- 1. All question carry marks as indicated.
- 2. Answer three question from Section A and three question from Section B.
- 3. Use of pen Blue/Black ink/refill only for writing the answer book.
- 4. Use of calculator is permitted.

SECTION - A

- 1. a) 7 Show that the function $u = e^x (x \cos y - y \sin y)$ is harmonic find its harmonic conjugate & the corresponding analytic function f(z) = u + iv.
 - If f(z) is analytic function of z then prove that b) $\left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial z^2}\right) |f(z)|^n = n^2 |f(z)|^{n-2} \cdot |f'(z)|^2$

OR

- a) Find bilinear transformation which maps ∞ , i, 0 from z-plane into the points 0, i, ∞ from 7 w-plane.
 - 7 b) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 - 4x = 0$ into a straight line 4u+3=0.
- 6 a) Evaluate $\int \frac{\sin^2 z}{(z-\pi/2)^3} dz$ by Cauchy's integral formula where C is the circle |z|=1
 - 7 b) Find Taylor's and Laurent's series which represents the function $\frac{z^2-1}{(z+2)(z+3)}$
 - when
- i) |z| < 2ii) 2 < |z| < 3

OR

- If |z+1| < 1, show that $z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1) (z+1)^n$
 - 7 b) Evaluate the integral by Residue theorem $\oint \frac{2z-1}{z(z+1)(z-3)} dz$ where c:|z|=2.

- 5. a) Solve $p^2 pq = 1 z^2$
 - b) Solve $p^2 y^3 q = x^2 y^2$
 - c) Solve $(D^2 DD')z = \cos x \cdot \cos 2y$

OR

6. a) Solve
$$x^2p^2 + y^2q^2 = z$$

b) Solve
$$x^2(y-z)p+y^2(z-x)q=z^2(x-y)$$

c) Solve:
$$(D^3 - yDD'^2 - 6D'^3)z = e^{2x+y}$$

SECTION - B

7. a) Prove that
$$J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right]$$

b) Prove that
$$\int_{0}^{\infty} e^{-bx} J_{0}(ax) dx = \frac{1}{\sqrt{a^{2} + b^{2}}}$$

Show that
$$\int_{-1}^{1} x^2 p_{n-1} p_{n+1} dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}$$

OR

http://www.sgbauonline.com

5

7

6

8. a) Prove that
$$\int x^{2n+1} J_n^2 dx = \frac{x^{2n+2}}{4n+2} \left[J_n^2 + J_{n+1}^2 \right]$$

b) Show that
$$p_n(-x) = (-1)^n p_n(x)$$

c) Use Rodrigue's formula to prove
$$(n+1)p_n = p'_{n+1} - x p'_n$$

- 9. a) Two cards are drawn in succession from a pack of 52 cards. Find the chances that the first is a king and the second is a queen if the first card is
 - i) replaced
 - ii) not replaced
 - b) In a sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2 out of 1000 such samples, how many would be expected to contain at least 3 defective parts.

OR

AU - 2583

- 10. a) In a bolt factory, machines A, B and C manufactures 25%, 35% and 40% of the total. Out of their output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine B?

7

- b) If the probability that an individual suffers a bad reaction from a certain injection is 0.001. Determine the probability that out of 2000 individuals
- 6

7

6

ttp://www.sgbauonline.com

- i) Exactly 3,
- ii) More than 2 individuals suffer a bad reaction

11. a)

Fin	Find coefficient of correlation for the following data.										
	x	1	2	3	4	5	6	7	8	9	10
	y	10	12	16	28	25	36	41	49	40	50

Verify Sylvestor's theorem for A^3 where $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$

OR

a) Find the equations of lines of regression for the data.

	х	1 2		3	4	5
ĺ	у	3	1	2	5	4

b) Fit a straight line to the data using method of least square.

x	1	2	3	4	5	6	7	8	9
у	9	8	10	12	11	13	14	16	15
