B.E. Fourth Semester (Elect. Engg. (Elect. & Power Elect.)) (CGS)

10546: Numerical Methods & Computer Programming: 4 EP 05 / 4 EX 05 / 4 EL 05 / 4 EE 05

P. Pages: 2

Time: Three Hours

MMNNII

AU - 2584

6

7

7

7

7

7

7

nttp://www.sgbauonline.com

Max. Marks: 80

Notes: 1. Assume suitable data wherever necessary.

- Find the root of the equation $f(x) = x^3 + x^2 + x + 7 = 0$ using Bisection method correct up-to three decimal places.
 - Find the root of the equation $f(x) = \cos x xe^x = 0$ correct upto three decimal places using secant method.

OR

- 2. a) Find the smallest positive root of $x^3 5x + 3 = 0$ using Newton Raphson method using & iterations.
 - b) Write a 'C' program to solve algebraic equation using Bisection method.
- 3. a) Solve following system of equations using matrix inversion method. 3x + y + 2z = 3

$$2x - 3y - z = -3$$

$$x + 2y + z = 4$$

b) Solve following simultaneous equations using Guass elimination method.

$$-12x_1 + x_2 - 8x_3 = -80$$

$$x_1 - 6x_2 + 4x_3 = 13$$

$$-2x_1 - x_2 + 10x_3 = 90$$

OR

4. a) Find the values of x, y, z by Gauss Jordan elimination method.

$$x + y + z = 1$$

$$4x + 3y - z = 6$$

$$3x + 5y + 3z = 4$$

b) Solve the following simultaneous equation by Triangularization method.

$$2x + 3y + z = 9$$

$$x + 2y + 3z = 6$$

$$3x + y + 2z = 8$$

5. a) Construct the difference table from following data and obtain f (50.5) using Newton's forward difference formula.

x	50	51	52	53	54
y=f(x)	39.1961	39.7981	40.3942	40.9843	41.5687

b) Construct the backward difference table for following data and obtain the backward difference polynomial passing through all the points.

х	0.1	0.2	0.3	0.4	0.5
y = f(x)	1.40	1.56	1.76	2.00	2.28

OR

6. a) For the following data, find the polynomial f(x) which passes through all the points.

f(x) 3	-6	39	822_	1611

Using divided difference table.

P.T.O

- b) $y = x^3$ is given for x = 1, 2, 3, 4, 5. use Lagrange's formula to obtain x at y = 3.375
- s formula to obtain x at y = 3.375

6

7

7

7

7

7

6

7

nttp://www.sgbauonline.com

SECTION - B

- 7. a) Write a program for finding value of function $\int_{0}^{6} \frac{1}{1+x^2} dx$ by trapezoidal rule.
 - b) Find the first and second derivative for function tabulated below at x = 3.

 t 3.0 3.2 3.4 3.6 3.8 4.0

 x -14 -10.032 -5.296 -0.256 6.672 14

OR

- 8. a) Evaluate $\int_{0}^{2} \frac{x}{\sqrt{2+x^2}}$ dx, use trapezoidal rule with four steps.
 - Evaluate $\int_{0}^{\pi} (4 + 2\sin x) dx$ using Simpson's $\frac{3}{8}$ rule where n = 5.
- Using second order Runge Kutta method solve $f(x,y) = -2x^3 + 12x^2 20x + 8.5$ using step size of 0.5 and initial conditions of y = 1 at x = 0; Find value of y at x = 0.5 (only one step).
 - Use modified Euler's method to solve $\frac{dy}{dx} = x^2 + y$ with the condition y(0) = 1; Find value of y at x = 0.1

OR

- 10. a) Write a 'C' program for finding solution of differential equation using Runge Kutta fourth order method.
 - Solve $\frac{dy}{dx} = x y^2$ by Taylor's series method to calculate y at x=0.4 in two steps Initial values are x = 0; y = 1
- 11. a) What are the benefits of object oriented programming.
 - b) Explain the following concepts in detail.
 i) Objects ii) Classes.

OR

- 12. a) Explain various control statements with suitable example.
 - b) What is object oriented Paradigm.
