B.E. Seventh Semester (Elect Engg (E & P), Ele and Electro, Ele & Power, Ele. Energy) (CGS) 10463 : Elective - I : Computer Methods in Power System Analysis 7 EE 05 / 7 EP 05 / 7 EL 05

http://www.sgbauonline.com

P. Pages: 2 Time: Three Hours			I MARKY BATO TALAH BATU LEFA TARU	AU - 2908 Max. Marks : 80	
	Not	es: 1. 2. 3. 4. 5. 6.	Answer three question from Section A and three question from Section B. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary. Diagrams and chemical equations should be given wherever necessary. Illustrate your answer necessary with the help of neat sketches. Use of pen Blue/Black ink/refill only for writing the answer book.		
			SECTION - A		
1.	a)		e mathematical model of synchronous generator for steady state and transient state considering the effect of saliency and changes in the flux linkages.	7	
	b)	Explain	the representation of load.	6	
			OR		
2.	a)	What is transform	phase shifting transformer? Derive the Y_{BUS} matrix element for phase shifting mer.	7	
	b)		e mathematical model of synchronous generator for steady state and transient state neglecting the effect of saliency and changes in flux linkages.	6	
3.	a)	Using n	on-singular transformation, derive loop impedance matrix i.e. Z loop.	7	
	b)	i) Ori iii) Bas	he following terms. iented graph. ii) Tree. sic cut-sets. iv) Basic loops. s incidence matrix.	7	
			OR		
4.	a)	What is	primitive network? Explain admittance and impedance form of representation.	7	
	b)	Derive b	oranch admittance and branch impedance matrix by non-singular transformation.	7	
5.	a)	Explain	the algorithm method of formulation of Z_{BUS} .	6	
	b)	•	the algorithm method of formulation of Y_{BUS} . How to modify Y_{BUS} for in power system?	7	
			OR		
6.	a)	Explain	how to represent three phase network element in impedance and admittance form.	6	

P.T.O

	b)	Prove that Clark's component transformation diagonalizes Z_{pa}^{abc} matrix in case of stationary elements.	7
		SECTION – B	
7.	a)	Derive the general expression for fault current and voltage, if fault occurs at bus 'P'.	7
	b)	Find fault impedance matrix in case of line to line fault. Also obtain the expression for the fault current and fault voltage in terms of symmetrical components.	6
		OR	
8.	a)	What is the use of short circuit studies? State the assumptions made during short circuit analysis of large power system.	7
	b)	Find 3-phase fault impedance matrix when three phase to ground fault occures at any bus of power system. Consider fault impedance per phase as $Z_{\rm f}$ and ground impedance as $Z_{\rm g}$.	6
9.	a)	Explain objectives, assumptions made and importance of load flow studies.	7
	b)	Newton-Raphson method is preferred to Gauss-Seidel method for load flow studies in large power system, Give reasons.	7
		OR	
10.		Draw flow chart of Gauss-Seidel method for load flow studies, when all types of buses are present. State its advantages and disadvantages.	14
11.		State assumptions made in transient stability analysis with the help of flow chart and necessary equations. Explain Runge Kutta method for transient stability analysis.	13
		OR	
12.		With the help of flow chart explain Euler's modified method used for transient stability analysis.	13

http://www.sgbauonline.com

AU - 2908

2