7

7

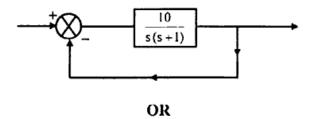
B.E. Seventh Semester (Elect Engg (E & P), Elect and Electro, Elect & Power, Ele. Energy) (CGS) 10457: Control Systems - II: 7 EE 01 / 7 EP 01 / 7 EL 01

P. Pages: 3

http://www.sgbauonline.com

AU - 2903

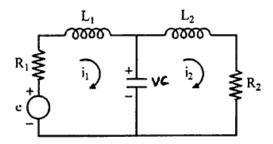
Max. Marks: 80


Notes:

Time: Three Hours

- 1. Answer three question from Section A and three question from Section B.
- 2. Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- 4. Illustrate your answer necessary with the help of neat sketches.
- 5. All questions carry marks as indicated.
- 6. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A


- For the system shown in fig. Design a lead compensator such that the closed loop system will satisfy the following specifications:
 - Static velocity error constant = 20 sec⁻¹.
 - ii) Phase margin = 50°.
 - iii) Gain margin ≥10dB.

- 2. a) Explain in detail steps to design Lead Compensator.
 - b) Draw bode plot and comment on stability for the given system,

G(s).H(s) = $\frac{100}{s(s+1)(s+5)}$.

3. a) Obtain the state model of given system using physical variable.

- b) Define the terms:
 - i) State
 - iii) State vector

- ii) State variable
- iv) State space

OR


P.T.O

7

7

6

4. a) Obtain the state model of given system using physical variable.

b) Derive the derivation for transfer function from state model.

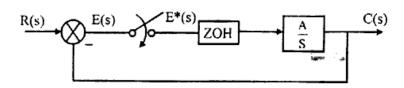
5. a) Consider a system describe by X' = AX + Bu, obtain feedback matrix, it is desired to have close loop poles at $S = -1 \pm j2$, S = -10

Where,
$$\Lambda = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
.

- b) Explain the following terms:
 - Controllability of the system.
 - Observability of the system.

OR

- a) State and explain Gilbert's and Kalman's test to check controllability and observability of the system.
 - b) A system is described by,


$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}.$$

Find feedback matrix, K, for this system the following specifications are to be met. $\xi = 0.5$, $\omega_n = 2 \, \text{rad/sec}$.

from the design specification form the equation $s^2 + 2\xi\omega_n s + \omega_n^2$ obtain its closed loop poles. Consider third closed loop pole at $s = -10\omega_n$.

SECTION - B

7. a) Determine Pulse transfer function for the system shown in fig. Assume T = 1 sec.

http://www.sgbauonline.com

b) Find the stability of the system by Jury's test.

$$f(z) = z^4 - 1.7z^3 + 1.04z^2 - 0.268z + 0.02.$$

OR

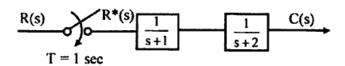
7 ·

7

7

7

6


7

6

13

nttp://www.sgb**a**uonline.com

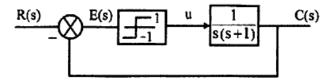
8. Determine pulse transfer function of the system shown in figure. a)

- b) Find inverse Z-transform of given difference equation, x(n+2) + 3x(n+1) + 2x(n) = 0where, $x(-1) = -\frac{1}{2}$ and $x(-2) = \frac{3}{4}$.
- 9. Obtain the describing function for deadzone with saturation. a)
 - b) Obtain the describing function for relay with deadzone.

OR

- Obtain the describing function for following: 10. a)
 - Ideal Relay.
 - ii) Saturation.

http://www.sgbauonline.com


- What is describing function? State assumption and limitation of describing function b) method.
- 11. a) Give classification of singular points and sketch phase trajectory for each.
 - Draw phase trajectory for the system. b)

$$\ddot{X} + \frac{g}{l} \sin x = 0$$

OR

12. Consider a non-linear as ideal relay. Obtain the phase plane trajectory with isocline method.

Where e'(0) = 0, e(0) = 1.

