B.E. Sixth Semester (Electrical & Electronics Engineering) (CGS)

10391 : Electrical Power - II : 6 EX 03

P. Pages: 2

AU - 2763

7

7

7

6

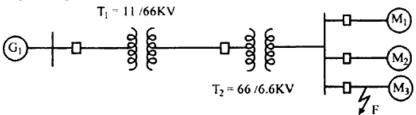
7

Max. Marks: 80

Time: Three Hours

- Answer Three question from Section A and Three question from Section B. Notes: 1.
 - 2. Due credit will be given to neatness and adequate dimensions.
 - 3. Assume suitable data wherever necessary.
 - 4. Illustrate your answer necessary with the help of neat sketches.
 - 5. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A


- Draw and explain zero sequence network for various types of transformer connections. 1. a)
 - 7
 - b) Prove that symmetrical transformation is power invariant.

OR

2. a) Explain:

nttp://www.sgbauonline.com

- Sequence impedance i)
 - Sequence network
- What is \alpha (alpha) operator? How will you represent the phase quantities in terms of b) symmetrical components & Vice versa?
- a) Explain the various types of current limiting reactors with their advantages & disadvantages.
 - A 25MVA, 11KV, generator with xd" = 20% is connected through a transformer, line and b) a transformer to a bus that supplies three identical motors as shown in fig. (3). Each motor has xd'' = 25% & xd' = 30% on a base of 5MVA. 6.6KV. The three phase rating of transformer is 25MVA. 66/6.6KV with leakage reactance of 10%. The bus voltage at motor is 6.6 KV when three phase fault occurs at the point 'F'. Determine the subtransient fault current. Assuming reactance of transmission line 15% on the base of 25MVA, 66KV and system is operating at no load when fault occurs.

OR

- Describe the three phase symmetrical short circuit of an unloaded alternator with the help 4. a) of circuit and waveforms.
 - Write a short note on Tie bar system. b)

6

7

P.T.O

http://www.sgbauonline.com

5.	a)	Develop an equivalent network showing the interconnection of sequence network to simulate single line to ground fault.	(
	b)	A 25MVA, 13.2KV alternator with solidly grounded neutral has a subtransient reactance of 0.25p.u. The negative and zero sequence reactances are 0.35 and 0.1 pu respectively. A single Line to Line fault occurs at the terminal of an unloaded alternator. Determine fault current and Line to Line voltages.	•
		OR	
6.	a)	A 3ϕ , 11KV, 10 MVA alternator has sequence reactance of $x_0 = 0.05$ pu, $x_1 = x_2 = 0.15$ pu. If the generator is on no load, find the ratio of fault current for LG fault to that when all the three phases are dead short circuited.	(
	b)	Draw the equivalent network for line to line fault when fault occurs through impedance Z_F on lines 'a' & 'b'. Line 'c' is healthy.	1
		SECTION – B	
7.	a)	State and explain various causes of overvoltages and their harmful effects on power system.	7
	b)	Explain the phenomenon of lightning. What are the various types of lightning stroke?	7
		OR	
8.	a)	What do you meant by lightning arrestors? State the various types of lightning arrestors? And also explain valve type lightning arrestors with suitable diagram.	8
	b)	Explain: i) BIL ii) Insulation Co-ordination.	6
9.	a)	Discuss why DC transmission is superior to AC transmission for long distance.	6
	b)	Draw and Explain general layout of HVDC system.	7
		OR	
10.	a)	What is ground return? What are the problems associate with use of ground as return conductor?	7
	b)	Explain different types of HVDC links.	6
11.	a)	Compare FACTS with AC transmission system.	6
	b)	Explain with the neat diagram the working of TCSC.	7
		OR	
12.	a)	What are different types of FACTS controllers? How are they connected in line? Explain in brief.	7
	b)	Explain the working of SVC in details.	6

AU - 2763 2

http://www.sgbauonline.com