B.E. Eighth Semester (Electrical Engineering) (CGS)

10470: Digital Signal Processing: 8 EE / 8 EP / 8 EL 03

P. Pages: 2

AU - 3025

Max. Marks: 80

Time: Three Hours

Notes:

l. Assume suitable data wherever necessary.

2. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. Explain with examples, classification of systems. a)

8

Derive the BIBO stability criterion for LIT Discrete system. b)

6

7

nttp://www.sgbauonline.com

OR

2. Perform discrete time convolution of the signals where. a)

$$x(n) = 1$$
 , $n = -2, 0, 1$

$$= 2$$
 , $n = -1$

$$= 0$$

elsewhere

$$h(n) = \delta(n) - \delta(n-1) + \delta(n-4) + \delta(n-5).$$

A second order system is described by following difference equation.

$$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + x(n-1).$$

Find system's response to the input $x(n) = \left(\frac{1}{2}\right)^n u(n)$ with zero initial conditions.

Find DTFT of following signals a)

i)
$$x(n) = \left(\frac{1}{2}\right)^{|n|}$$

ii)
$$x(n) = u(n) - u(n-4)$$

iii)
$$x(n) = r^n \cos(won)u(n)$$

iv)
$$x(n) = a^n u(n) + a^{-n} u(-n-1)$$
.

- State and explain following properties of DTFT b)
 - Time shifting.

Convolution ii)

iii) Time scaling.

OR

Obtain 8 pt DFT using Radian 2, WIT Algorithm. 4, a)

x(n) = [1, 2, 4, 1, 3, 5, 2, 1].

State and explain Perseval's theorem. b)

4

5. Explain quantization and coding process in A/D converter. a)

8

5

9

Explain the role of sample and Hold in A/D conversion process. b)

5

OR

1 AU - 3025

P.T.O

- a) Explain Antialiasing falter.
 - b) A sampled signal that varies between 2V to + 2V is quantized using B bits what value of B will ensure an rms quantized error less than 5mV?

SECTION - B

6

7

nttp://www.sgbauonline.com

13

13

7

6

7. Obtain direct, form I, form II cascade and parallel realization of filter described by $H(z) = \frac{1 - z^{-1}}{1 - 0.2 z^{-1} - 0.15 z^{-2}}.$

OR

8. a) Obtain filter coefficients for FIR filter with frequency response. $H(\omega) = e^{-J3\omega} - \frac{\pi}{4} \le |\omega| \le \frac{\pi}{4}.$

Using Hamming window of length 7.

- Explain window based approach of FIR filter design.
- Design digital IIR filter using impulse invariant transformation with transfer function. $H(s) = \frac{2}{(s+2)(s+1)}$ $T = 1 \sec .$
 - b) Explain frequency wrapping effect in Bilinear transformation.

OR

 Design digital Butterworth low pass filter for following specifications using Bilinear transformation.

Pass band gain $\rightarrow 0.89$

Pass band frequency cutoff at 0.3π .

Stop band attenuation at 0.1778 stop band frequency cutoff at 0.6π .

State different Architectures of DSP processor and explain any one in detail.

OR

- 12. a) Compare digital signal processor and microprocessor.
 - b) Explain algorithm design and data conversion using DSP.

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये,

Paytm or Google Pay 社

AU - 3025