AU - 2509

Third Semester B. E. (Electronics and Telecommunication Engg.) Examination

ELECTROMAGNETIC FIELD

Paper - 3 XT 3/3 XN 03 (USC - 10593)

P. Pages: 3

Time: Three Hours]

[Max. Marks : 80

Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of civil branch and Separate answer book must be used for Section A and B in Pharmacy and Cosmetic Tech.

- (2) Answer Three questions from Section A and Three questions from Section B.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION A

(a) State and prove Stoke's theorem.

7

nttp://www.sgbauonline.com

(b) A vector field is given by

 $\overline{G} = 24xy^2 \hat{a}_x + 12(x^2 + z) \hat{a}_y + 18y^2 \hat{a}_z$ and P(1, -2, 1), Q(3, -1, 2) are any two points.

Find:

- (i) \overline{G} at point P
- (ii) Unit vector along \overline{G} at point Q
- (iii) Unit vector along G at point P

6

OR

- 2. (a) Given two points C(-3, 2, 1) and D($\gamma = 5$, $\theta = 20^{\circ}$, $\phi = 70^{\circ}$) Find:
 - (a) The spherical co-ordinate of C
 - (b) The rectangular co-ordinate of D
 - (c) The distance from C to D

0

AU-2509

P.T.O.

- (b) A vector $\overline{A} = (2xy \ \hat{a}_x 5x^2y \ \hat{a}_z)$ Calculate both sides of divergence theorem for volume enclosed by $1 \le x \le 2$, $0 \le y \le 1$ and $0 \le z \le 2$.
- 3. (a) Three uniform sheets of charge are located in free space as follows 3 nc/m^2 at z = -4, 6nc/m^2 at z = 1 and -8nc/m^2 at z = 4 find \overline{E} at point (a) $P_A(2, 5, -5)$ (b) $P_B(4, 2, -3)$
 - (b) Obtain an expression for electric field intensity due to infinite long line charge with line charge density $\varrho_{\rm t}$ c/m.

OR

- 4. (a) Derive Maxwell's equation $\nabla \cdot \overline{D} = \varrho_V$ for static electric field.
 - (b) A point charge of $6\mu c$ is located at the region, a uniform line charge density of 180 nc/m lies along the x-axis and a uniform sheet of charge equal to 25 nc/m^2 lies in z = 0 plane. Find \overline{D} at A(0, 0, 4).
- 5. (a) Show that the magnetic field intensity due to infinite filament on z axis is given by

$$\overline{H}_{\phi} = \frac{I}{2\pi\rho} \hat{a}_{\phi}$$

.7

nttp://www.sgbauonline.com

(b) Find the current flowing due to field $\overline{H} = 10^6 \text{ r sin}\theta \ \hat{a}_{\phi} \text{ A/m}$ over the region $r = 1 \text{ mm} \quad 0 \le \theta \le \pi/6 \text{ and } 0 \le \phi \le 2\pi.$

OR

- 6. (a) Derive Maxwell's equation $\nabla X \hat{H} = \hat{J}$ for static electric field.
 - (b) Evaluate the closed line integral of \overline{H} about the rectangular path $P_1(2, 3, 4)$ to $P_2(4, 3, 4)$ to $P_3(4, 3, 1)$ to $P_4(2, 3, 1)$ to P_1 . Given

$$\overline{H} = 8z \hat{a}_x - 4x^3 \hat{a}_z A/m$$

-7

SECTION B

7. (a) The magnetic flux density is $\overline{B} = 6 \cos (10^6 \text{ t}) \cdot \sin (0.01 \text{ x}) \hat{a}_z \text{ mT}$. Find the magnetic flux passing through surface z = 0, 0 < x < 20 m, 0 < y < 3 m at $t = 1 \mu \text{s}$.

AU-2509

(b) Obtained boundary condition at the interface of two dielectric medium. 7

OR

- 8. (a) For time varying field show that $\nabla X \overline{H} = \overline{J} + \frac{\partial \overline{D}}{\partial t}$
 - (b) Find the value of k so that each of the following pairs of fields satisfy Maxwell's equation in the region where $\sigma = 0$ and $\varrho_v = 0$.
 - (a) $\overline{E} = (k_x 175t) \hat{a}_y \text{ v/m}, \overline{H} = (x + 35t) \hat{a}_z \text{ A/m } \mu = 0.35 \text{ H/m}, \\ \epsilon = 0.01 \text{ F/m}.$

(b)
$$\overline{D} = 6x\hat{a}_x - 4y\hat{a}_y + k_z\hat{a}_z \mu c/m^2 \overline{B} = 2 \hat{a}_y mT$$

 $\mu = \mu_0 \text{ and } \epsilon = \epsilon_0.$

- (a) Derive an expression for reflection coefficient (Γ) and transmission coefficient (T) for an electromagnetic wave at perfect dielectric-dielectric interface for normal interface.
 - (b) Show that for good conductor attenuation and phase constant is given by $\alpha = \beta = \sqrt{\pi f \mu \sigma}$.

OR

- (a) Consider a material for which μ_r = 1, ∈_r = 4 and loss tangent is 0.1.
 Calculate conductivity (σ), wavelength (λ) and velocity (v) at frequency of 50 Hz.
 - (b) Derive the Poynting theorem and give significance of each term in the theorem.
- Derive the expression for power radiated and radiation resistance of small alternating current element Idl.

OR

12. Derive the expression for field radiated by half wave dipole assuming a sinusoidal current distribution. Hence show that the radiation resistance is 73Ω .

AU-2509

3

180

nttp://www.sgbauonline.com