AU - 2516

Third Semester B. E. (Electronics and Telecommunication) Examination

ELECTROMAGNETIC FIELDS

Paper - 3 ET 05 (USC - 11828)

P. Pages: 4

Time: Three Hours }

[Max. Marks: 80

- Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of Civil branch and separate answer book must be used for Section A and B in pharmacy and Cosmetic Tech.
 - (2) Due credit will be given to neatness and adequate dimensions.
 - (3) Assume suitable data wherever necessary.
 - (4) Illustrate your answer wherever necessary with the help of neat sketches.
 - (5) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION A

- 1. (a) Given points A(2,5,-1), B(3,-2,4) and C(-2,3,1) Find
 - (i) $\overline{R_{AB}} \cdot \overline{R_{AC}}$
 - (ii) Angle between R_{AB} and R_{AC}
 - (iii) Vector projection of $\overline{R_{AB}}$ on $\overline{R_{AC}}$

2+2+3=7

attp://www.sgbauonline.com

- (b) Transform each of the following vectors to spherical co ordinate system at the point specified
 - (i) $5 \hat{a} \times at A (4.25^{\circ}, 120^{\circ})$

(ii)
$$4 \hat{a}x - \hat{a}y - 4\hat{a}z$$
 at B (-2,-3,4)

3+4=7

OR

- 2. (a) Find $\nabla \times \overline{H}$ for
 - (i) $\overline{H} = xyz (\hat{a}x + \hat{a}y)$ at P (3,2,1)

(ii)
$$\overline{H} = e\phi z \hat{a} z \text{ at } Q (2,30^{\circ},3)$$

6

P.T.O.

(b) Explain in brief the divergence of a vector.

3

- (c) Find the volume enclosed by the surface defined by 3 < r < 5, $0.1\pi < \theta < 0.3\pi$ and $1.2\pi < \phi < 1.6\pi$.
- (a) Derive the expression for Electric field intensity due to sheet of charge.
 Compare it with Electric Field intensity due to line charge.
 6+1=7
 - (b) If $V = \frac{60 \sin \theta}{r^2}$ volt in free space and point P is located at

 $(3,60^0,25^0)$,

Find :--

- (i) $V_{\mathbf{P}}$
- (ii) Ep
- (iii) ϱ_{v} at point P.

6

attp://www.sgbauonline.com

OR

- 4. (a) Derive an expression for Potential difference between two points A and B, in the vicinity of Electric field due to point charge Q.
 - (b) If $\overline{D} = 6 \text{ xyz}^3$ $\hat{a}x + 3x^2z^2$ $\hat{a}y + 6x^2yz$ $\hat{a}z$ C/m², find total charge enclosed by the region bounded by x=1 and x=3, y=0 and y=1 and z=-1 and z=1.
- 5. (a) State Ampere's circuital law. Also obtain its point form.
 - (b) Find magnetic field intensity in cartession co-ordinate at point
 P(1.5,2,3) caused by the current carrying filament of 24 amp in az direction and extending from z=0 to z=6.

ÜR

6. (a) Derive an expression for magnetic field intensity at the center of circular wire carrying current I in anticlockwise direction. The radius of circle is a and the wire is located in xy plane.

AU-2516

(b) Find magnetic field intensity within magnetic material if Magnetization M = 150 A/m and $\mu = 1.5 \times 10^{-5} \text{ H/m}$.

SECTION B

- (a) Derive boundary conditions at the interface of a conductor and free space.
 Explain in brief equipotential surface.
 - (b) Assume a homogeneous medium of infinite extent with $\in 2 \times 10^{-10} \, \text{F/m}$, $\mu = 1.25 \times 10^{-5} \, \text{H/m}$ and $\sigma = 0$. Let $\overline{E} = 400 \cos (10^9 t kz)$ ax V/m. If all fields vary sinusoidally, use Maxwell's equations to find:—
 - (i) <u>D</u>
- (ii) \overline{B}
- (iii) K.

1+3+2=6

http://www.sgbauonline.com

OR

- 8. (a) Derive the Maxwell's equation $\nabla \cdot \mathbf{D} = \varrho_{\mathbf{v}}$. Enlist all Maxwell's equations in integral form for time varying fields. 4+2=6
 - (b) Region 1 is characterised by $\mu r_1 = z$ while region 2 has $\mu r_2 = 5$. If two regions are separated by 3x 2y + 5z = 0 and if $\overline{H}_1 = 4ax + 6ay 3az$ A/m, Find \overline{H}_2 .
- (a) Derive Poynting theorem and give significance of each terms in the theorem.
 - (b) A 150 MHz uniform plane wave in a free space is travelling in ax direction. The electric field intensity has a maximum amplitude of 200 ay+400 az V/m at point P(10,30, -40) at t=0. Find ω, β, λ, η, E(x,y,z,t) and H(x,y,z,t).

OR

- (a) For a wave propagating through dielectric medium in x-direction with electric component in y-direction, obtain expression of intrinsic impedance.
 - (b) Derive the expression for reflection coefficient (r) and transmission coefficient
 (T) for an electromagnetic wave of perfect dielectric interface for normal incidence.

AU-2516

3

P.T.O.

 Obtain expression for electric field and magnetic field radiated by small alternating current element Idl.

OR

- 12. (a) Explain the concept of,
 - (i) Scalar magnetic potential
 - (ii) Retarded potential.

6

(b) Derive the expression for vector magnetic potential.

7

http://www.sgbauonline.com

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

AU-2516

4

180