B.E. Third Semester (Electronics & Telecommunication) (New) Electronics Devices & Circuits: 3 ET 03

P. Pages: 2 Time: Three Hours

AU - 2514Add

Max. Marks: 80

									_
Notes	: 1	. D	ue o	credit	will	be	given	to	ne

- 1. Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- 3. Illustrate your answer necessary with the help of neat sketches.
- 4. Use of pen Blue/Black ink/refill only for writing book.
- A silicon diode has 5 mA in forward bias at 0.7V. Calculate its reverse saturation current.
 Now if its forward voltage is increased to 0.75V, calculate new current in diode at room temperature.
 - b) What are the capacitances associated with the PN junction diode? Explain in detail.

OR

- 2. a) In a bridge rectifier, the transformer is connected to 220V, 50Hz mains and the turns ratio of the step down transformer is 11:1. Assuming the diodes to be ideal, find
 -) The voltage across the load
- ii) l_{dc}

iii) PIV

http://www.sgbauonline.com

b) Explain the importance of filters with neat diagrams.

6

7

6

7

6

7

6

7

- 3. a) What are the drawbacks of the collector to base bias circuit? How can it be removed? Explain with circuit diagram.
 - b) A single stage CE amplifier has a BJT with $h_{ie} = 1.2 \, k\Omega$, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 60$, $h_{oe} = 30 \, \mu A / V$ along with $R_S = 900 \, \Omega$, $R_L = 1 \, k\Omega$. Calculate A_i , A_{is} , A_{vs} , R_i and A_p .

OR

- 4. a) Draw and explain common base configuration in detail.
 - n in detail. 7
 - b) Draw the circuit for collector to base bias and derive the stability factor S for the same. 7 Also explain how this circuit provides stability against change in temperature.
- 5. a) Explain the principle of oscillations. What are the conditions for sustained oscillations?
 - b) Explain the effect of feedback on Bandwidth of amplifiers.

OR

- 6. a) A tuned collector oscillator circuit has a fixed inductance of 100 μH and has to be tunable over the frequency band of 500KHz to 1500KHz. Find the range of variable capacitor to be used.
 - b) Derive the expression of input and output resistance in Voltage-Series feedback.

P.T.O

6

7

http://www.sgbauonline.com

7.	a)	Why does the cascading of stages increase the gain-band width product of an amplifier?					
	b)	What is the necessity of Darlington connection? Explain the biasing problem associated with it. How is it overcome?	7				
		OR					
8.	a)	A cascaded amplifier uses 3 stages having the individual gain 10, 20 and 40 respectively. What is the overall voltage gain in dB.	3				
	b)	Explain the necessity of impedance matching in amplifiers.	4				
	c)	Draw and explain direct coupled transistor amplifier.	6				
9.	a)	For a power transistor working in class A operation has zero signal power dissipation of 8W. If the a.c. output power is 3W, determine: i) Power rating of transistor. ii) Collector efficiency.	7				
	b)	What is cross over distortion? Explain any one method to overcome it.					
		OR					

power amplifier is

$$P = \left(1 + D^2\right)P_1$$

Where, D is total distortion

 P_{\perp} is the output power due to

fundamental component of the distorted signal.

b) Explain the operation of class B push pull amplifier with circuit diagram and waveforms.

What is meant by harmonic distortion in power amplifiers? Show that the total power in

- What are the biasing schemes available to achieve the required bias in JFET? 11. a) Explain any one in detail.
 - An n-channel JFET has $I_{DSS} = 8mA$ and $V_P = -5V$. Determine the minimum values of b) V_{DS} for pinchoff region and the drain current I_{DS} for $V_{GS} = -2V$.

OR

- Explain with the help of circuit diagram the working of UJT relaxation oscillator. 12. a)
 - b) Explain the construction, operation and V_{DS}-I_D and transfer characteristics of n-channel 6 depletion type MOSFET.

http://www.sgbauonline.com

10

a)