http://www.sgbauonline.com

B.E. Fourth Semester (Electronics & Telecommunication) (New)

Digital Electronics: 4 ET 04

P. Pages: 2

http://www.sgbauonline.com

AU - 2590

* 0 9 6 9 *	Max. Marks: 80
~ · · · · · · · · · · · · · · · · · · ·	

Time	e :	Max. Ma	rks: 80
	Not	es: 1. All question carry equal marks. 2. Answer three question from section A and three question from section B. 3. Assume suitable date wherever necessary. 4. Illustrate your answer necessary with the help of neat sketches. 5. Use of pen Blue/Black ink/refill only for writing book.	
1.	a)	Explain in brief Transistor-Transistor logic (TTL) circuit with active pull up arrangements. Verify the logic operations given by TTL.	7
	b)	Perform the following. i) Convert (1011011) ₂ to Gray code ii) Convert (28F) ₁₆ to octal iii) (75) ₁₀ - (57) ₁₀ by 2's complement method.	7
		OR	
2.	a)	Minimize the following logical expressions by Boolean Algebra i) $B \oplus (B \oplus AC) = AC$	8
		ii) $ABC + BCD + \overline{ABC} = BC + BD$	
	b)	Explain the following characteristics of digital IC's. i) Noise Margin ii) Figure of merit iii) Fanin and Fanout	6
3.	a)	Minimize the following logic function and realize using NAND gates only. $f_1(A, B, C, D) = \Sigma m(1,3,5,8,9,11,15) + d(2,13)$	7
	b)	Design the combinational circuit for full adder and implement it using suitable gates.	6
		OR	
4.	a)	Design and explain one digit BCD adder circuit using 4-bit adder IC 74LS83 and require gates. Explain with the help of suitable example.	ed 7
	b)	Design binary to gray cod converter circuit using suitable gates.	6
5.	a)	Implement the following logical expression using 8:1 MUX $F = \Sigma m \ (0,1,2,3,4,10,11,14,15)$	7
	b)	Design 5-line to 32 line decoder circuit using 4-line to 16-line decoders and suitable gate	e. 6
		OR	
6.	a)	Design 5-bit comparator using single 7485 IC and suitable gate. Also explain its operation.	7
	b)	Compare ROM, PLA and PAL	6
A 1	11 - 24	90	oτo

AU - 2590

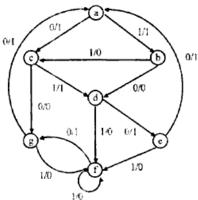
i

P.T.O

8

13

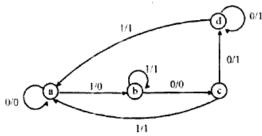
8


5

7

- 7. a) What is Race around condition? How it is overcome? Explain master-slave J-K flip flop with proper table.
 - b) Design 4-bit parallel in serial out right shift register using D-Flip Flops and suitable gates. 6

OF


- 8. a) State differences between synchronous and asynchronous counters. 5
 - b) Design 2-bits asynchronous up counter using negative edge triggered T-Flip Flops and explain its operation with proper wave forms.
- 9. a) Obtain reduced state table and reduced state diagram for the sequential machine whose state diagram is shown below.

b) Draw the state diagram and state table for a Moore type sequence detector to detect the sequence 110.

OR

 Design a clocked sequential circuit using T-Flip Flops and suitable gates for the state diagram given below.

11. a) Explain in brief-

http://www.sgbauonline.com

- i) PROM
- iii) EEPROM

- ii) EPROM
- iv) NVRAM
- b) Explain the working of dynamic RAM cell.

OR

- 12. a) Explain the read cycle timing parameters of a memory using proper timing diagram.
 - b) With neat circuit diagram explain the operation of bipolar static RAM cell.

2

AU - 2590