http://www.sgbauonline.com

6

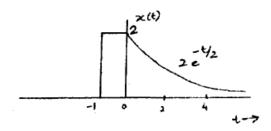
7

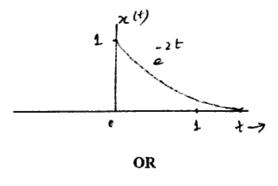
B.E. Fourth Semester (Electronics & Telecommunication) (New)

Signals And Systems: 4 ET 01

P. Pages: 3

Time:


http://www.sgbauonline.com

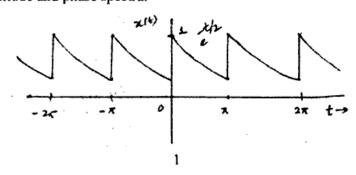

AU - 2587 Max. Marks :

6

1. a) Explain energy signal and hence obtain the energy of signal shown in figure.

An exponential function $x(t) = e^{-2t}$ shown in figure is delayed by 1 second. Sketch and mathematically describe the delayed function. Repeat the problem with x(t) advance by 1 second.

2. a) Show that the system described by the equation


 $\frac{dy}{dt} + 3y(t) = x(t)$ is linear.

b) Find y₀(t), the zero-input component of response for an LTIC system described by the following differential equation
(22 app 2) (1) (2) (2) (2) (3)

 $(D^2 + 3D + 2)y(t) = Dx(t)$

when the initial condition are $y_0(0) = 0$ and $y_0'(0) = -5$.

3. a) Find the compact trigonometric Fourier series for the periodic signal x(t) shown in figure. 10 Sketch the amplitude and phase spectra.

P.T.O

AU - 2587

b) Explain Existence and convergence of the Fourier series.

4

7

6

nttp://www.sgbauonline.com

OR

- 4. a) A periodic signal x(t) is represented by a trigonometric Fourier series x(t) = 2+3 cos 2t + 4 sin 2t + 2 sin (3t + 30°) cos (7t + 150°)
 Express this series as a compact-trigonometric Fourier series and sketch amplitude and phase spectra.
 - b) Explain Parseval's theorem for Fourier series.
- 5. a) Explain the relation between Fourier transform and Laplace transform.
 - b) Find the zero state response of a stable LTIC system with frequency response $H(s) = \frac{1}{s+2}$ and the input is $x(t) = e^{-t}u(t)$.

OR

- 6. a) Find the Fourier transform of $e^{-a|t-t_0|}$.
 - b) State and prove the following properties of Fourier transform
 - i) Linearity
 - ii) Convolution
 - iii) Time shifting.
- 7. a) Determine the Laplace transform of the following.
 - a) $\delta(t)$
 - b) u(t)
 - c) cos w_otu(t)
 - b) Determine the initial and final values of y(t) if its Laplace transform y(s) is given by $y(s) = \frac{10(2s+3)}{s(s^2+2s+5)}.$

OR

- 8. a) Find canonic direct form realization of following transfer function.
 - a) $\frac{5}{5+7}$
 - b) $\frac{s}{s+7}$
 - c) $\frac{s+5}{s+7}$
 - b) Explain Parallel and Cascade realization of system.

4

9

9.	a)	Draw the signal graphically if $x(n) = \{1, -1, 1, 1\}$ i) $x(n+2)$ ii) $x(-n)$ iii) $x(-n+2)$	7
	b)	Check whether the given system is time variant or time invariant i) $y(n) = nx(n)$ ii) $y(n) = x(n) + nx(n-1)$	7
		OR ·	
10.	a)	Solve iteratively $y(n)-0.5y(n-1)=x(n)$	7
		with initial condition $y(-1) = 16$ and causal input $x(n) = n^2$ starting at $n = 0$.	
	b)	Explain finding natural and forced response in classical solution of linear difference equation of discrete time system.	7
11.	a)	Explain z-transform and existence of z-transform.	6
	b)	Explain DFT and write any two properties of z-transform.	7
OR			
12.	a)	Explain relation between DTFT and CTFT.	6
	b)	Explain Discrete time Fourier Series for analysis of signals.	7

http://www.sgbauonline.com

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्य, Paytm or Google Pay से