AU - 2849

Seventh Semester B. E. (Mechanical Engineering) Examination

ENERGY CONVERSION-II

Paper - 7 ME 02 (USC - 10871)

P. Pages: 5

Time: Three Hours]

[Max. Marks: 80

- Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of Civil branch and separate answer book must be used for Section A and B in pharmacy and Cosmetic Tech.
 - (2) Answer Three questions from Section A and Three questions from Section B.
 - (3) Due credit will be given to neatness and adequate dimensions.
 - (4) Assume suitable data wherever necessary.
 - (5) Illustrate your answer wherever necessary with the help of neat sketches.
 - (6) Use of slide rule, logarithmic table, steam tables, Molliers chart, drawing instrument, Thermodynamic Table for moist air, psychrometric chart, and refrigeration charts is permitted.
 - (7) Use pen of Blue/Black ink/refill only for writing book.

SECTION A

- (a) Air is to be compressed in a single stage reciprocating compressor from 1.013 bar and 15°C upto 7 bar. Calculate the indicated power required for a free air delivering of 0.3 m³/min when compression process is
 - (i) Isentropic
- (ii) Isothermal
- (iii) Polytropic with n = 1.25.

7

http://www.sgbauonline.com

(b) Following data relate to a performance test of single acting (14cm x 10cm) reciprocating compressor:—

Suction pressure = 1 bar; Temp. = 20° C

Discharge pressure = 6 bar; Discharge Temp. = 180 °C

Speed of compressor = 1200 rpm

Shaft power = 6.25 kW

Mass of air delivered = 1.7 kg/min

AU-2849

P.T.O.

Calculate	the	following	;
-----------	-----	-----------	---

- (i) Volumetric Efficiency
- (ii) Indicated Power
- (iii) Isothermal Efficiency
- (iv) Mechanical Efficiency.
- (v) Overall isothermal Efficiency.

7.

OR

- 2. (a) What is clearance volume in reciprocating compressor? What is effect of clearance volume on volumetric efficiency and work of compressor? 7
 - (b) Single stage double acting air compressor is required to deliver 14 m³ of air per min. measured at 1.013 bar and 15 °C. Delivery pressure is 7 bar and speed is 300 rpm. Clearance volume is 5% of swept volume. Index of compression and expansion is 1.3.

Calculate:--

- (i) Swept volume of cylinder
- (ii) Delivery Temperature

(iii) Indicated Power.

7

http://www.sgbauonline.com

- 3. (a) Explain with neat sketch construction and working of Roots Blower. 6
 - (b) Compare the work inputs required for a Roots Blower and Vane type compressor having same induced volume of 0.03 m³ / rev, the inlet pressure being 1.013 bar and pressure ratio 1.5 to 1. For vane type assume that internal compression takes place through half the pressure range.

OR

- 4. (a) Explain with neat sketch construction and working of vane type blower. 6
 - (b) Free air of 30 m³/ min. is compressed from 1.013 bar to 2.23 bar. Calculate power required if:—
 - (i) Compression is carried out in Roots Blower.
 - (ii) Compression is carried out in Vane Blower.

Assume that there is 25% reduction in volume before back flow occurs. 7

AU-2849

2

- 5. (a) What is under cooling or subcooling of liquid refrigerant? What is its effect on C. O. P. of refrigeration system?
 - (b) A simple vapor compression plant produces 5 tonnes of refrigeration. The enthalpy volues at the inlet to compressor, at the exit of compressor, and at the exit from condenser are 183.19 kJ/kg; 209.41 kJ/kg and 74.59 kJ/kg respectively. Find:—
 - (i) Mass Flow Rate of Refrigerant
 - (ii) C. O. P.
 - (iii) Power required to drive compressor
 - (iv) Rate of Heat rejection in condenser.

OR

- (a) What is superheating of Refrigerant? What is the effect of super heating on C. O. P. of refrigeration system? Explain with the help of P-h and T-s diagram. http://www.sgbauonline.com
 - (b) 28 Tonnes of ice formed at 0°C is produced per day in an ammonia refrigerator. Temperature range in compressor is from 25°C to 15°C. Vapor is dry and saturated at the end of compression. Assuming a coefficient of performance 62% of therotical; calculate power required to drive compressor.
 Use following table for properties of NH₃.

Temp. ⁰ C	Enthalpy (kJ/kg)		Entropy of Liquid	Entropy of Vapour
	liquid	Vapour	1	
25	100.04	1319	0.3473	4.48
- 15	- 54.56	1304	- 2.13	5.05

Take latent Heat of ice = 335 kJ/kg.

-

7

nttp://www.sgbauonline.com

SECTION B

- (a) What is Regeneration in gas turbine plant? Explain effect of Regeneration with the help of T-S diagram on performance of Gas Turbines.
 - (b) In an air standard Regenerative gas turbine cycle, the pressure ratio is 5. Air enters the compressor at 1 bar, 300 K and leaves at 490 K. The max. temp.

AU-2849

3

P.T.O.

in the cycle is 1000 K. Calculate thermal efficiency of cycle. Efficiency of regenerator is 80%. Also assume that isentropic efficiency of turbine is 80% and efficiency of compressor is 85%. For air take ratio of spe. heat = 1.4.

OR

- (a) What is intercooling in gas turbine? What is effect of intercooling on performance of gas turbine? Represent the same on T - S diagram.
 - (b) Air enters compressor of an open cycle constant pressure gas turbine at a pressure of 1 bar and temp. 20°C. Pressure of air after compression is 4 bar. The isentropic efficiences of compressor and turbine are 80% and 85% respectively. The air fuel ratio is 90%. If mass flow rate of air is 3kg/s. Find:—
 - (i) Power developed
 - (ii) Thermal Efficiency of cycle

Assume Cp = 1 kJ/kgK v = 1.4 calorific value of fuel = 41800 kJ/kg.

attp://www.sgbauonline.com

7

- (a) Explain with neat sketch construction and working of Boiling Water Reactor.
 - (b) Explain nuclear chain reaction with the help of neat sketch.

OR

- (a) Explain with neat sketch construction and working of Pressurised Water Reactor.
 - (b) What are the factors to be considered while erecting nuclear power plant? Discuss advantages and disadvantages of nuclear power plant over thermal power plant.
- (a) What is the use of solar drier? Explain Solar Dryer with the help of neat sketch.
 - (b) Explain with neat sketch construction and working of floating drum type Bio gas plant.

AU-2849

4

OR

- 12. (a) What are the types of collectors? Explain central tower receiver collector with heliostats.
 - (b) How light energy can be converted into electricity? Explain working and construction of solar P-V cell.

http://www.sgbauonline.com

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

AU-2849 5 180