AU - 2557

Third Semester B. Tech. (Food, Pulp and Paper, Oil and Paint Petro Tech.) (CGS)

Examination

## APPLIED THERMODYNAMICS

Paper - 3 CT 04

(USC - 11004)

P. Pages: 4

Time: Three Hours]

[ Max. Marks : 80

- Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of civil branch and Separate answer book must be used for Section A and B in Pharmacy and Cosmetic Tech.
  - (2) Answer Three questions from Section A and Three questions from Section B.
  - (3) Assume suitable data wherever necessary.
  - (4) Illustrate your answer wherever necessary with the help of neat sketches.
  - (5) Use of slide rule, logarithmic tables, Steam tables, Mollier's chart, Drawing instrument, Thermodynamic table for moist air, Psychrometric Chart and Refrigeration charts is permitted.
  - (6) Use pen of Blue/Black ink/refill only for writing the answer book.

## SECTION A

1. (a) What is quasi static process?

6

http://www.sgbauonline.com

(b) Prove that heat transferred in polytropic process:

$$Q = \frac{r-n}{r-1} \times \text{polytropic W.D.}$$

7

#### OR

- (a) Apply steady flow energy equation to a nozzle and derive an equation for velocity at exit.
  - (b) The velocity and enthalpy of fluid at the inlet of a certain nozzle are 50 m/s and 2800 kJ/kg respectively. The enthalpy at the exit of nozzle is 2600 kJ/kg. The nozzle is horizontal and insulated so that no heat transfer takes place from it. Find: 1 velocity of the fluid at exit of the nozzle; 2. mass flow rate, if the area at inlet of nozzle is 0.09 m² and the specific volume is 0.185 m³/kg; and 3 exit area of nozzle, if the specific volume at the exit of nozzle is 0.495 m³/kg.

P.T.O.

| 3.  | (a)    | What are primary fuels? List same important primary fuels.                                                                                                                                                                                                                                                                                                                                       | 6             |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     | (b)    | Describe with neat sketch 'Orsat Apperatus".                                                                                                                                                                                                                                                                                                                                                     | 7             |
| . • |        | OR                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 4.  | (a)    | A sample of fuel has the following percentage composition :                                                                                                                                                                                                                                                                                                                                      |               |
|     |        | Carbon = 86 percent; Hydrogen = 8 percent                                                                                                                                                                                                                                                                                                                                                        |               |
|     |        | Sulphur = 3 percent; Oxygen = 2 percent                                                                                                                                                                                                                                                                                                                                                          |               |
|     |        | Ash = 1 percent                                                                                                                                                                                                                                                                                                                                                                                  |               |
|     |        | For an air-fuel ratio of 12:1, calculate:                                                                                                                                                                                                                                                                                                                                                        |               |
|     |        | (i) Mixture strength as a percentage, reach or weak.                                                                                                                                                                                                                                                                                                                                             |               |
|     |        | (ii) Volumetric analysis of the dry products of combustion.                                                                                                                                                                                                                                                                                                                                      | 3             |
| -   | (0)    | House de beiles accessories differ from mountings 2                                                                                                                                                                                                                                                                                                                                              | _             |
| 5.  | (a)    | C                                                                                                                                                                                                                                                                                                                                                                                                | 6             |
|     | (b)    | What are the advantages of artificial draught over natural draught?                                                                                                                                                                                                                                                                                                                              | 8             |
|     |        | OR                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 6.  | (a)    | Define the chimney efficiency and find out expression for the same.                                                                                                                                                                                                                                                                                                                              | 6             |
|     | (b)    | With a chimney height 45 meters, the temperature of flue gases with natural draught was 370°C. The same draught was developed by induced draught far and the temperature of the flue gases was 150°C. Mass of the flue gases formed is 25 kg per kg of coal fired. The boiler house temperature is 35°C Assuming Cp = 1.004 kJ/kgK, for the flue gases. Determine the efficiency of the chimney. | m<br>es<br>C. |
|     |        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                        |               |
| 7.  | (a)    | Explain with neat sketch:                                                                                                                                                                                                                                                                                                                                                                        |               |
|     |        | (i) Receiver type compound steam engine.                                                                                                                                                                                                                                                                                                                                                         |               |
|     |        | (ii) Surface Condenser.                                                                                                                                                                                                                                                                                                                                                                          | 8             |
|     | (b)    | What is diagram factor? State the reasons why its value is less than unity                                                                                                                                                                                                                                                                                                                       | y.<br>5       |
| AU- | - 2557 | 2                                                                                                                                                                                                                                                                                                                                                                                                |               |

http://www.sgbauonline.com

# OR

| 8. | (a) | State th | e advantages | of | compounding | а | steam | engine  |  |
|----|-----|----------|--------------|----|-------------|---|-------|---------|--|
| о. | (a) | State in | c auvantages | O. | compounding | а | sicam | CHEHIC. |  |

5

(b) A double acting steam engine with a bore of 300 mm and stroke of 400 mm runs at 300 r.p.m. The inlet is at 8 bar and the back pressure is 1.2 bar. The cut-off occurs at 30% of the stroke. Determine the power developed, taking the diagram factor as 0.8. If the steam is dry saturated at 8 bar at the point of cut-off, determine the steam consumption in kg/hr.

8

9. (a) Explain 'otto cycle' and derive an expression for efficiency.

6

(b) Differentiate S.I. engine with C.I. engine.

- 8

## OR

10. (a) Discuss the 'lubrication' of an I.C. engine.

5

nttp://www.sgbauonline.com

(b) Following observations were recorded during a test on a single cylinder oil engine:

Bore = 300 mm; Stroke = 450 mm;

Speed = 300 r.p.m.; i.m.e.p = 6 bar;

net brake load = 1.5 kN; broke

brake drum diameter = 1.8 meters;

brake rope diameter = 2 cm

Calculate:

- (i) Indicated power;
- (ii) Brake power;
- (iii) Mechanical efficiency.

9

11. (a) When multistage compression used for air? What are its advantages?

6

AU-2557

P.T.O.

3

(b) Prove that the work done/kg of air in a compresser is given by :

$$W = RT, \frac{n}{n-1} \left[ \left( \frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$$
OR

- 12. (a) Enumerate the application of compressed air.
  - (b) A two stage compressor takes in 2.82 m<sup>3</sup> of air per minute at a pressure of 1.05 bar and temperature of 22°C. It delivers the air at 8.44 bar. The compression is carried out in each cylinder according to the low pv<sup>1.2</sup> = constant. The air is cooled to its initial temperature in inter cooler. Neglecting clearance, find the minimum power required to drive the compressor.

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

AU-2557

Δ

180

6

nttp://www.sgbauonline.com