B.Sc. (Part—I) Semester—I Examination 1S: BIOINFORMATICS

(Elementary Mathematics and Statistics)

Time: T	hree l	Iour	rs]		[Maxim	ium Marks : 80	
Not	e :	-(1)	Attempt ALL questions.				
		(2)	Question No. 1 is comp	ulsory.			
1. (a)	Fill	in th	e blanks :				
	(i)	If K	is some constant and u is	a derivable func	tion of x and $y = KU$ th	en $\frac{dy}{dx}$ is equal	
		to				1/2	
	(ii)	The	e function f(x) is odd iff f	(-x) =	x ∈ X.	1/2	
	(iii)	Skp	is represented as	·		1/2	
	(iv)	If a	pair of fair dice is tossed	$\frac{1}{2}$ then $\frac{1}{2}$	·	1/2	
(b)	Cho	ose	the correct alternative and	rewrite the com	plete sentence :		
	(i)		(x) and g(x) are continu	ous function at	x = a then f(x) + g(x)	is continuous	
		(a)	x = -a	(b)	x = a		
		(c)	$\mathbf{x} = 0$	(d)	None of these	1/2	
	(ii)	 i) If y = f(x) is a function and f'(a) = 0 and f(x) is decreasing at x > a and x < a then x = a is called as: 					
		(a)	Minima	(b)	Maxima		
		(c)	Point of inflection	(d)	Local Maxima	1/2	
	(iii)	Qu	artile divides the data in $_$	equal par	ts.		
		(a)	10	(b)	4		
		(c)	99	(d)	12	1/2	
	(iv)	If 2	coins are tossed once, the	en the number o	f sample points are:		
		(a)	4	(b)	8		
		(c)	10	(d)	0	1/2	
(c)	Ans	wer	the following questions in	one sentence ea	ch:		
	(i)	De	fine Decile.			- 1	
	(ii)	Wł	nat do you mean by regres	ssion ?		1	
	(iii)	Wł	hat is meant by random va	riable?		1	
	(iv)	Wł	hat are quartiles?			1	
3							

2.	(a)	Prove that $f(x)$	= x' is contin	uous at point 3	by using	definition of	\in – δ continuity.	4
----	-----	-------------------	----------------	-----------------	----------	---------------	------------------------------	---

(b) If
$$\cos^{-1}\left(\frac{x^2-y^2}{x^2+y^2}\right) = \tan^{-1}a$$
 then show that $\frac{dy}{dx} = \frac{y}{x}$, where 'a' is constant.

(c) Explain Median and its Merits and Demerits. 4

OR

- (p) Find the value of x for which the function f is given by $f(x) = 2x^3 3x^2 12x + 10$ is increasing.
- (q) Explain any two types of functions with examples.
- (r) Write down the difference between frequency polygon and ogive curve.

3. (a) Show that
$$\int_{0}^{\pi/2} \log \tan x \, dx = 0$$
.

- (b) Express $\int_{0}^{2} e^{x} d^{x}$, using the definition of a definite integral as the limit of a sum.
- (c) What is Quartile Deviation?

OR

(p) Show that
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}.$$

(q) Evaluate
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx$$

- (r) Find the area of the region lying between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0.
- 4. (a) Deduce the differential equation from $y = A \cos 3x + B \sin 3x$ by eliminating arbitrary constant A and B.
 - (b) Solve the differential equation:

$$y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right). ag{4}$$

(c) Solve the differential equation:

$$(1-x^2)(1-y) dx = xy(1+y) dy.$$

OR

- (p) What are partition values? Explain different types of partition value.
- (q) Explain Box and Whisker diagram and draw for the following data:

WPZ—8255 2 (Contd.)

5. (a) Find the maximum and the minimum value of the function $f(x) = 3x^3 - 9x^2 - 27x + 15$.

Δ

- (b) If $\log (x^2 + y^2) = 2 \tan^{-1}(y/x)$ then show that $\frac{dy}{dx} = \frac{x+y}{x-y}$.
- (c) Find the volume of a right circular cone of height h with base radius r.

4

OR

(p) Calculate the Karl Pearson's coefficient of skewness for the following data:

х	5	15	25	35	45
у	5	8	15	16	6

6

- (q) Three groups of children contain respectively 3 girls and 1 boy; 2 girls and 2 boys; 1 girl and 3 boys. One child is selected at random from each group. Find the probability that the three selected children include 1 girl and 2 boys.
- 6. (a) Calculate the Percentile and Decile that is P₁₅, P₇₀, P₉₉ and D₄, D₇, D₉ for the following data:

Marks	0-10	10–20	20-30	30–40	40–50	50–60	60–70
Frequency	5	20	40	70	85	65	50

6

- (b) Two cards are drawn from a well-shuffled pack. Find the probability that:
 - (i) Both are kings
 - (ii) One king and one queen
 - (iii) Both are hearts.

6

OR

(p) If f and g are integrable functions of x, then prove that:

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$
 6

(q) Solve the differential equation:

$$x^2dy + y(x + y) dx = 0.$$

- 7. (a) Explain the terms:
 - (i) Mutually exclusive events
 - (ii) Equally likely events
 - (iii) Sample space.

6

6

(b) Explain Probability Mass Function (PMF).

6

OR

WPZ--8255 3 (Contd.)

(p) Draw the histogram for the following data:

Weekly Wages	No. of Workers
1015	7
15-20	19
20-25	27
25-30	15
30–35	12
35–40	12
40–45	8
45-50	9

6

(q) If A and B are independent, then prove that A and B' are also independent.

6