(R) Heat supplied to Carnot's Engine is 1320 Joule. Calculate the amount of useful work done by it and efficiency of engine operating between 435 K and 300 K.

UNIT VI

- 12. (A) Derive the relationship between critical constant in terms of van der Waal's constant.
 - (B) Calculate RMS and average velocity of CO₂ gas at 1000 °C

$$(M CO_2 = 44 \times 10^{-3} \text{ kg})$$

- (C) Define the following terms:
 - (i) Triple point (ii) Phase.

OR

- (P) Explain Maxwell-Boltzmann distribution law of molecular velocities.
 - (Q) Calculate P_c and T_c for a gas if a = 0.740 dm⁶ atm mole² and b = 0.0213 dm³ mole¹ (R = 0.0821 dm³ atm k^{-1} mole¹).
 - (R) Draw well labelled diagram of sulphur system and explain significance of each curves. 4

AR – 479 8

13100

First Semester B. Sc. (Part - I) Examination

1S: CHEMISTRY

P. Pages: 8

Time: Three Hours]

[Max. Marks: 80

Note: (1) All questions are compulsory.

- (2) Question number one carries eight marks while each of the remaining six questions carries twelve marks.
- (3) Draw diagrams and write equations wherever necessary.
- (4) Use of calculator is allowed.
- 1. (A) Fill in the blanks :—
 - (i) $(4n+2)\pi$ electron rule is called———rule.
 - (ii) In diborane, boron atom is hybridized.
 - (iii) The species containing positively charged carbon centre is called ———.
 - (iv) The critical volume is related with van der Wall constant as ______ . 2

P.T.O.

(B)	Choose	correct	option	from	the	given
	alternativ	es :				

- (i) Valence shell electronic configuration of alkali metals is:
 - (a) ns^2
- (b) ns² np²
- (c) $ns^2 np^3$
- (d) ns¹
- (ii) Delocalization of σ bond electrons with π bond electron is called as:
 - (a) Inductive effect.
 - (b) Resonance effect.
 - (c) Hyperconjugative effect.
 - (d) Electromeric effect.
- (iii) Which of the following group is o-p directing group:
 - (a) -COOH
- (b) $-NH_2$
- (c) $-NO_2$
- (d) -CHO
- (iv) In water system the degree of freedom at triple point is:
 - (a) One

(b) Two

- (c) Zero
- (d) Three.
- 2
- (C) Answer the following in one sentence:—
 - (i) What is meant by screening effect?

AR - 479

2

(Q) Complete the following reactions:

(R) Define with suitable example:

- (i) Activating groups.
- (ii) Deactivating groups.

UNIT V

- 10. (A) Define the term entropy and give physical significance of it.
 - (B) Distinguish between isothermal and adiabatic process. 4
 - *(C) The heat of vaporization of 1 mole of ethanol is 38.57646 kJ mol and its melting point is 351.5 k. Calculate the entropy change.

OR

- 11. (P) State first law of thermodynamics and give its limitations.
 - (Q) Describe the four steps of Carnot cycle. 4

AR-479

7

P.T.O.

•	ъ.	П.	
	ж	ĸ	
-			

7. (P) Explain E1 mechanism with suitable example.

(Q) Define following terms with an example :

- (i) Electromeric effect
- (ii) Cumulated diene.
- (R) Define free radicals. Give two methods of generation of free radicals.

UNIT IV

- 8. (A) What are the characteristics of antiaromatic compounds?
 - (B) Give the mechanism of Nitration of benzene.
 - (C) On the basis of modern electronic theory explain m-directing effect of -NO₂ group.

OR

9. (P) Discuss Kekule's structure of benzene. 4

(ii) State phase rule.

(iii) What are meta directing groups ?

(iv) Define covalent radius.

1

UNIT I

(A) Define lattice energy. Give Born-Lande equation for calculation of Lattice energy giving meaning of each term.

(B) Explain:—

- (i) Ionic bond formation.
- (ii) Electron affinity value for inert gas is zero.
- (C) Explain how ionization potential varies in a period and a group.

OR

3. (P) Define the following terms:-

(i) Electron affinity.

(ii) van der Waal's radius.

(Q) How will you determine electronegativity of an atom by using Pauling scale? 4

AR-479

: 3

P.T.O.

AR - 479

- (R) Calculate the heat of formation $(\triangle H_f)$ of KF from its elements using the Born–Haber cycle. The data is :
 - Sublimation energy of potassium $(s) = 87.878 \text{ kJmol}^{-1}$
 - Dissociation energy of $F_2(D) = 158.9 \text{ kJ mol}^{-1}$
 - Ionization energy of $K_{(g)}$ (I) = 414.2 kJ mo \overline{l}^1
 - Electron affinity for $F_{(g)}(E) = -334.7 \text{ kJ mol}^{-1}$
 - Lattice energy of $K_f(u_0) = -807.5 \text{ kJ mol}^{-1}$

UNIT II

- (A) Write the electronic configuration of IV A group elements.
 - (B) Define carbides. Give short account on ionic and covalent carbides. 4
 - (C) What is the action of following on diborane:
 - (i) Alkali (ii) Oxygen

OR

- (P) Explain why alkali metals exhibit +1 and alkaline earth metals exhibit +2 oxidation state only.
 - (Q) Explain ionization energy of P-block elements.
 - (R) Explain the following terms :-
 - (i) Inert pair effect.
 - (ii) Diagonal relationship.

4

UNIT III

6. (A) Explain the stability of carbocation on the basis of inductive effect and resonance effect.

4

- (B) How will you prepare:
 - (i) Ethane from acetylene ?
 - (ii) 1, 3-butadiene from cyclohexane? 4
- (C) Write short note on :-
 - (i) Aromatization of alkane
 - (ii) Peroxide effect.

4

AR - 479

4

AR-479

P.T.O.