B.Sc. (Part—I) Semester—I Examination INDUSTRIAL CHEMISTRY (R/V)

			- /
Time: Three	Hours]		[Maximum Marks: 80
N.B. :— (1)	Question No. 1 is compulsory and carries	8 m2	urks.
(2)	Remaining all SIX questions carry 12 ma	ırks ea	ich.
(3)	Give chemical equations and draw diagra	m wh	erever necessary.
(4)	Use of calculator is allowed.		
1. (A) Fill	in the blanks :		2
(i)	Derived units are obtained by dividing an	d mul	tiplying
(ii)	Miscible liquid components are separated	from	each other by operation
	by providing thermal energy.		•
(iii)	Coke, Kerosene oil, Petrol are the example	les of	fuel.
(iv)	In Pitot tube fluid become stagnant due pressure energy.	to con	version of energy into
(B) Cho	ose correct alternative :		2
(i)	Ultimate analysis of coal gives the idea a	bout p	percentage of in coal.
	(a) Volatile matter	(b)	Ash content
	(c) Nitrogen	(d)	Moisture content
(ii)	is the source of non-conventiona	l ener	gy.
	(a) Coal	(b)	Wood
	(c) Oil	(d)	Sun
VTM—13327	1		(Contd.)

www.sgbauonline.com

	(iii) In extraction operation, phas	e which is rich in	solute is called as	phase.
	(a) Raffinate	(b)	Extract	
	(c) Mobile	(d)	Stationary	
	(iv) Which of the following is a heat exchange equipment?			
	(a) Cooler	(b)	Condenser	
	(c) Heater	(b)	All of above	
(C)	Answer in ONE sentence :			4
	(i) Define stoichiometric equati	on.		
	(ii) Define heat of reaction.			
	(iii) What is mole?			
	(iv) State Kirchhoff's law for rac	diation.		
		UNIT—I		
2. (a)	Define :			
	(i) Base units	(ii)	Derived units	
	(iii) Gram atom	(iv)	Equivalent weight.	4
(b)	Calculate equivalent weight of:			
	(i) HCl	(ii)	NH_3	
	(iii) H ₂ SO ₄	(iv)	NaOH	4
(c)	Show that sum of all the mole fr	action in the solut	ion is unity.	4
		OR		
3. (p)	Give the SI units of:			
	(i) Pressure	(ii)	Density	
	(iii) Enthalpy	(iv)	Power	4
VTM13	327	2		(Contd.)

	(q)		gen to give methyl alcohol. Calculate the weight 00 kg methyl alcohol.	
	(r)	of CO and H ₂ required to produce 500 kg methyl alcohol. Define:		
	(1)			
		(i) Normality (ii)	Molarity	
		(iii) Molecular weight (iv)	Mole fraction 4	
		UNI	T—II	
4.	(a)	Discuss extraction operation with blo	ck diagram and give material balance equations.	
			4	
	(b)	An evaporator is fed with 5000 kg/hi	solution containing 10% solute by weight is to	
		be concentrated to a solution containing	ng 40% by weight of solute. Calculate, Kg/hr of	
		water evaporated and Kg/hr of thick product obtained.		
	(c)	Explain the following terms with examples:		
		(i) Excess Reactant		
		(ii) Conversion.	4	
			OR .	
5.	(p)	Discuss distillation operation with bloc	k diagram and give the material balance equations.	
			4	
	(q)	Explain the following terms with exa	amples :	
		(i) Stoichiometric equation		
		(ii) Stoichiometric coefficient.	4	
	(r)	In the manufacturing of SO ₃ , feed to r	eactor consists of 50 Kmol of SO ₂ and 150 Kmol	
		air. Calculate percent excess of air o	ver theoretically required. 4	
VTN	A—13	3327	3 (Contd.)	

4.

5.

www.sgbauonline.com

UNIT-III

6.	(a)	What is heat capacity? Explain heat capacity at constant pressure.	4	
	(b)	In a production of H ₂ SO ₄ from anhydrite, the gypsum is roasted with clay to sulphur dioxide and cement. The reaction proceeds as follows:	obtain	
		$3 \text{ CaSO}_4 + \text{SiO}_2 \rightarrow 3 \text{ CaOSiO}_2 + 3 \text{ SO}_2 + 3/2 \text{ O}_2.$		
		Calculate the heat of reaction at 25°C.		
		Given —Enthalpy of $CaSO_4 = -1432.7 \text{ kJ/mole}$		
		Enthalpy of $SiO_2 = -903.5 \text{ kJ/mole}$		
		Enthalpy of 3 $CaOSiO_2 = -2879.0 \text{ kJ/mole}$		
		Enthalpy of $O_2 = 0.0 \text{ kJ/mole}$		
		Calculate the heat of reaction.	4	
	(c)	Explain production of electricity by solar energy.	4	
		OR		
7.	(p)	Discuss the terms with example:		
		(i) Heat of formation		
		(ii) Heat of combustion.	4	
	(q)	Describe Hess's law of constant heat summation.	4	
	(r)	Discuss the uses of solar energy.	4	
	UNIT—IV			
8.	(a)	Discuss the classification of coal.	6	
	(b)	Explain the process of fractional distillation of crude oil.	6	
	OR			
9.	(p)	Discuss proximate and ultimate analysis of coal.	6	
	(q)	Give an account of coal-gas.	6	
VTM	1—13	327 4	(Contd.)	

www.sgbauonline.com

UNIT-V

10.	(a)	Explain the phenomenon of pool boiling.	4
	(b)	State and explain Fourier's law.	4
	(c)	Explain the terms :	
		(i) Thermal conductivity	
		(ii) Thermal diffusivity.	4
		OR	
11.	(p)	Discuss parallel flow heat exchanger.	4
	(q)	Derive general heat conduction equation.	4
	(r)	Explain free and forced convection.	4
		UNIT—VI	
12.	(a)	Describe the construction and working of orificemeter.	6
	(b)	Explain:	
		(i) U-tube manometer	
		(ii) Pitot tube.	6
		OR	
13.	(p)	Explain Bernoulli's equation.	6
	(q)	Describe construction and working of centrifugal pump.	6

www.sgbauonline.com