B.Sc. (Part-I) Semester-I Examination **MATHEMATICS**

Paper—II

(Differential & Integral Calculus)

Time: Three Hours

[Maximum Marks: 60

Note :—(1) Question No. 1 is compulsory. Attempt once.

- (2) Attempt one question from each unit.
- Choose the correct alternatives (1 mark each):-

10

(i) Let
$$f(x) = \sin \frac{1}{x}, x \neq 0$$

= 0, x = 0

Then f(x) has discontinuity of ____ at x = 0.

(a) Type-II

(b) Ordinary

(c) Removable

- (d) None of these
- (ii) Let f(x) = [x] = greatest positive integer not greater than x,

then $\lim_{x\to 2} f(x) =$

(a) 0

(b) 1

(c) 2

- (d) does not exist
- (iii) If $y = (2x 3)^4$ then $y_3 = ____.$
 - (a) 192

(b) (2x - 3)

(c) 192(2x - 3)

- (d) 0
- (iv) A function f(x) has a derivative at $x = x_0$ iff _____.

 - (a) $f'(x_0^+) = f'(x_0^-)$ (b) $f'(x_0^+) \neq f'(x_0^-)$
 - (c) $f'(x_0^+) = f'(x_0^-) \neq f'(x_0)$ (d) None of these
- (v) If a real function f defined on [a, b] is:
 - (1) Continuous on [a, b]
 - (2) Differentiable on (a, b)

then there is at least one point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. It is statement of _____.

- (a) Rolle's theorem
- (b) Lagrange's mean value theorem
- (c) Cauchy mean value theorem
- (d) None of these
- (vi) The series of $f(x) = \sin x$ is:
 - (a) $x \frac{x^3}{3!} + \frac{x^5}{5!} \dots$
- (b) $1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots$
- (c) $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$ (d) $x+\frac{x^3}{3!}+\frac{x^5}{5!}+\dots$

WPZ-8233

(Contd.)

http://www.sgbauonline.com/ (vii) If $f(x, y) = x^2 + 2xy + y^2$ then $f_{xy} = $							
	(vii)	(a)	x, y) = x + 2xy + y + 4xxx = 1	(b)	2		
		(c)		(d)			
				``'			
	(viii) If $f(x, y) = \frac{1}{x} + \frac{\log x - \log y + 7}{y}$ then $f(x, y)$ is homogeneous of degree						
		(a)		(b)			
		(c)		(d)			
	(ix) Let $f(x)$ be continuous and non-negative on [a, b]. Then the area A bounded by the cur $y = f(x)$, the x-axis and two ordinates $x = a$, $x = b$ is $A = $						
		(a)	$\int_{b}^{a} y dx$	(b)	$\int_{1}^{b} y dx$		
		(c)	∫ x dy	(d)	$\int_{b}^{n} x dy$		
	(x) The process of finding the length of arc of a curve by definite integral is known as:						
		(a)	Quadrature	(b)	Unification		
		(c)	Rectification	(d)	None of these		
	UNITI						
(a)	If $\lim_{x\to x_0} f(x) = \ell$, then f is bounded on some deleted neighbourhood of x_0 , prove this. 3						
(b)	Show that $\lim_{x\to 1} \frac{2x^3 - x^2 \cdot 8x + 7}{x - 1} = -4$.					3	
(c)	Discuss the continuity of the function $f(x) = (x - a) \sin \frac{1}{(x - a)}$, $x \ne a$						
	=0, x=a.						
	at point $x = a$.						
(p)	If $\lim_{x\to x_0} f(x)$ exists, then it is unique. Prove this.					4	
(q)	Show that $\lim_{x\to 0} f(x)$ does not exist, if $f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$.					3	
(r)	Let $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, show that $f(x)$ has removable discontinuity at $x = 0$.					3	
UNITII							
(a)	Show that $f(x) = x^2$ is differentiable in $0 \le x \le 2$.					3	
(b)	Fine	ly _n f	For $y = tan^{-1}\left(\frac{x}{a}\right)$.			3	

2.

3.

4.

(Contd.) 2 WPZ--8233

(c) If $y = x^n \cdot log x$, then show that $y_{n-1} = \frac{n!}{x}$.

4

http://www.sgbauonline.com/

5. (P) Prove that
$$\lim_{x \to 1} \left[\frac{1}{\log x} - \frac{x}{x-1} \right] = -\frac{1}{2}$$
.

(q) If
$$y = \cos x \cdot \cos 2x \cdot \cos 3x$$
, find y_n .

(r) If
$$y = e^{a \sin^{-1} x}$$
, prove that :
 $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+a^2)y_n = 0.$

UNIT-III

- 6. (a) If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is a point $c \in (a, b)$ such that $\frac{f(b) f(a)}{g(b) g(a)} = \frac{f'(c)}{g'(c)}$, where $g(a) \neq g(b)$ and f'(x), g'(x) are not simultaneously zero.
 - (b) Verify Lagrange's mean value theorem for $f(x) = \log x$ in [1, e].
 - (c) Expand sin x in power of $(x \frac{1}{2}\pi)$.
- 7. (p) Verify the truth of Rolle's theorem for $f(x) = x^2 + x 6$ in [-3, 2].
 - (q) Expand $\tan^{-1}x$ in powers of $\left(x-\frac{\pi}{4}\right)$.
 - (r) If f is differentiable on (a, b) and $f'(x) \ge 0$, $\forall x \in (a, b)$ then prove that f is monotone increasing on (a, b).

UNIT-IV

- 8. (a) If $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, $x^2 + y^2 + z^2 \neq 0$, show that $u_{xx} + u_{yy} + u_{zz} = 0$.
 - (b) If u = f(x, y) is a homogeneous differentiable function of degree n in x, y then $xu_x + yu_y = nu$. Prove this.
 - (c) If Z=f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$, then show that :

$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2.$$

- 9. (p) If u = f(x + ay) + g(x ay), show that $u_{yy} = a^2 u_{xx}$.
 - (q) If $u = \csc^{-1}\sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}}$, then show that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \frac{\tan u}{12}\left(\frac{13}{12} + \frac{\tan^2 u}{2}\right)$.
 - (r) If $z = f(x^2 y^2)$, show that $yz_x + xz_y = 0$.

UNIT--V

- 10. (a) Find the value $\int_{0}^{1} \frac{1-4x+2x^{2}}{\sqrt{2x-x^{2}}} dx$.
 - (b) Prove that $\int_{0}^{\pi/2} \sin^{n} x \, dx = \int_{0}^{\pi/2} \cos^{n} x \, dx = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, \text{ n is even.}$

$$=\frac{n-1}{n}\frac{n-3}{n-2}....\frac{2}{3}$$
, n is odd.

- (c) Calculate the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 11. (p) If $I_n = \int \sin^n x \, dx$ then $I_n = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}$.
 - (q) Find the length of the arc of the equiangular spiral $r = ae^{\theta \cot \alpha}$ between the points for which the radii vectors are r_1 and r_2 .
 - (r) Integrate $\int \frac{x^2 + 2x + 3}{\sqrt{x^2 + x + 1}} dx$