B.Sc. (Part-I) Semester-I Examination 1S: PHYSICS

			(Mechanics, Properties	of Matter, Wave	es and Oscillations)		
Tin	ne : T	hree	Hour	·s]		[Maxin	num Marks: 80	
	N.B	. :-	- (1)	All questions are comp	ulsory.			
			(2)	Draw neat diagrams wh	nerever necessary.			
1.	(A)	Fill						
		(i)	SΙι	unit of surface tension is	<u></u>		1	
		(ii)	Lin	ear momentum is	quantity.			
		(iii)	Wit	thin elastic limit, stress is	directly proportio	nal to		
		(iv)	The	fundamental frequency i	s calledh	armonics.	2	
	(B)	Cho	ose (correct alternative :				
		(i)	The	is maximum at :				
			(a)	Centre of Earth	(b)	Equator		
			(c)	Poles	(d)	Same everywhere		
		(ii)	At 1	resonance, the amplitude	of oscillation is:			
			(a)	Minimum	(b)	Maximum		
			(c)	Zero	(d)	Varying with time		
		(iii)	Vel	ocity of standing wave is	:			
			(a)	Zero	(b)	Maximum		
			(c)	Minimum	(d)	None of these		
		(iv)	hange in :					
			(a)	Volume	(b)	Shape		
			(c)	Length	(d)	None of these	2	
	(C)	Answer in one sentence each:						
		(i)	Wh	at is viscus drag?				
		(ii)	Wh	at is elastic limit?				
		(iii)	Def	ine Universal Gravitation	al Constant.			
		(iv)	Def	ine Moment of Inertia.			4	
	EIT	HEF	Ł					
2.	(A)) State and explain Newton's law of gravitation.						
	(B)) State and prove Gauss theorem in gravitation.						
	(C)	C) Obtain an expression for gravitational potential due to spherical shell at a point outsid						
		shel	1.				6	
\1/D'	Z823	A			1		(Contd.)	
VY FZ		-T			4		i Conia.	

Pendulum.

	OR	
3.	(P)	State and prove Kepler's Second Law of Planetary motion.
	(Q)	Define acceleration due to gravity, obtain its value at height 'h' above the earth surface.
	(R)	Derive an expression for a gravitational potential and intensity due to uniform solid sphere at a point outside the sphere.
	EIT	HER
4.	(A)	Derive an expression for the moment of inertia of a disc about an axis passing through its centre and perpendicular to its plane.
	(B)	State and prove theorem of perpendicular axes.
	(C)	A solid cylinder of mass 30 kg rotates about its axis with radius 30 cm. What will be the M.I. about its axis.
	OR	
5.	(P)	State and prove law of conservation of linear momentum.
	(Q)	Derive an expression for moment of inertia of solid sphere about its diameter.
	(R)	State the analogy between translational and rotational motion.
	EIT	HER
6.	(A)	How Keter's reversible pendulum is used to determine the acceleration due to gravity at a given place?
	(B)	Define Linear S.H.M., derive the expression for displacement, velocity and acceleration.
	OR	
7.	(P)	Define Compound Pendulum and obtain an expression for the periodic time of compound pendulum.
	(Q)	Derive an expression for total energy of harmonic oscillator. Show that it is conserved.
	EIT	THER
8.	(A)	What is Piezoelectric effect? How can the ultrasonic waves be produced by using Piezoelectric crystal oscillator?
	(B)	Give medical and industrial applications of ultrasonic waves.
	(C)	What are harmonics and overtones?
	OR	
9.	(P)	Derive an expression for velocity of transverse wave along stretched string.
	(Q)	Explain the formation of standing waves when two waves of equal amplitude and wavelength travels in opposite direction along the same line.
	(R)	What are Lissajous Figures?
		THER
10.		How the modulus of rigidity of material of a given wire can be determined by Torsiona

(B) Derive an expression for twisting couple per unit twist for cylindrical wire.

6

6


nttp)://WV	vw.sgt	bauonine.com/			
	OR					
11.	(P)	Define:				
		(i)	Young's modulus			
		(ii)	Bulk modulus			
		(iii)	Modulus of rigidity.	3		
	(Q)	Explain the terms:				
		(i)	Angle of twist			
		(ii)	Angle of shear.	3		
	(R)	R) Derive an expression for depression of a beam supported at two ends and middle.		n the 6		
	EIT	HER				
12.	(A)	Expla	ain surface tension on the basis of molecular theory.	4		
	(B)	State	Stoke's Law.	2		
	(C)	State	and prove Bernoulli's theorem.	6		
	OR					
13.	(P)	What	t is Reynold's number? Give its physical significance.	3		

(Q) Define surface energy and show that the surface tension is equal to potential energy per unit

(R) Derive Poiseuille's equation for rate of flow of liquid.

area.

6

