B.Sc. (Part-I) Semester-I Examination

1S: PHYSICS

(Mechanics, Properties of Matter, Waves & Oscillations)

Time—T	hree Hou	s]	[Maximun	n Marks—80		
Not	4 . 3	All questions as Draw suitable a necessary.		,		
1. (a)	1. (a) Fill in the blanks:					
	(i) The	e acceleration due	e to gravity a	t the poles is		
	-	 *				
	(ii) Time period of second's pendulum is					
	(iii) The	fundamental free	quency is	harmonic.		
	(iv) Sur	face tension of liqu	id decreases w			
*	+-	············		2		
(b)	Choose the correct alternative:					
	(i) Ke	pler's second law is about :				
	(a)	Elliptical Orbit	(b) Perio	d		
	(c)	Area	(d) Volun	ne e		
UWO—45	290(Re)	ſ		(Contd.)		

	(ii)	The modulus of elasticity is dimensionally		(b)	State and prove Bernoulli's theorem. 6	
		equivalent to:		(c)	What is Reynold's number? Give its significance.	
		(a) Strain		OR		
-	,	(b) Stress	13.		Derive Stoke's formula for a small sphere falling	
		(c) Surface tension	. 13.	(p)	through viscous liquid. 5	
		(d) Viscosity		(q)	Define surface tension. Give its unit and dimensions.	
	(iii)	i) At resonance, the amplitude of oscillation is:		-	. 2	
		(a) Minimum		(r)	Explain the Jaeger's method to determine surface tension.	
		(b) Maximum				
		(c) Zero				
		(d) Varying with time				
	(iv)	The moment of linear momentum is called:				
		(a) Couple				
		(b) Torque				
		(c) Impulse		,		
		(d) Angular Momentum 2				
(c)	An	swer in one sentence:				
	(i)	What is the SI unit of radius of gyration?				
!	(ii)	What is Poisson's ratio?				
-		(Contd.)	1.31	10 A	5200/Pe) 7 700	

OR 9. Obtain an expression for the velocity of transverse waves along a stretched string. State Newton's formula for the velocity of sound in air. Explain Laplace correction. What is Piezoelectric effect? Explain the production of ultrasonic waves by Piezoelectric oscillator. 4 EITHER Show that the couple required per unit angular twist in the case of cylindrical wire is $C = \pi n r^4/2L$. 7 (b) Obtain an expression for the periodic time of a Maxwell's needle. OR 11. (p) Define Beam and Neutral axis. Derive an expression for the depression at the loaded end of the light beam clamped horizontally at the other end. What are torsional oscillations? Derive an expression for the periodic time of a Torsional Pendulum. 5 EITHER 12. Define: (a) Streamline flow Turbulent flow Critical velocity. 3

(Contd.)

(iii)	Define	cohesive	force
(,		COLLODITO	10100

(iv) State continuity equation for streamline flow.

4

EITHER

 (a) Define universal gravitational constant, Obtain relation between gravitational constant and acceleration due to gravity on earth's surface.

(b) Define gravitational potential. Obtain an expression for gravitational potential due to spherical shell at a point outside the shell.

(c) The acceleration due to gravity on the surface of planet is 10 m/sec². If radius of planet is 6400 km, calculate acceleration due to gravity at height 3600 km above surface.

OR

(p) State Kepler's Laws of Planetary Motion.
 (q) Derive Kepler's Law for Areal Velocity.

(r) Obtain an expression for the acceleration due to gravity at a depth 'd' below the surface of earth.

4

UWO—45290(Re) 3 (Contd.)

UWO-45290(Re)

5

EITHER

- 4. (a) What is Moment of Inertia? Give its physical significance.
 - (b) State and prove theorem of parallel axes. 5
 - (c) Derive an expression for the moment of inertia of solid cylinder about its geometric axis passing through its centre of mass and perpendicular to its length.

OR

- 5. (p) The moment of inertia of sphere about its diameter is $\frac{2}{5}$ MR². Calculate its moment of inertia about the tangent.
 - (q) State and prove law of conservation of angular momentum for system of particles.
 - (r) Uniform rod of length 'L' and mass 'M' rotates about an axis passing through one of its end. Calculate moment of inertia about this axis.

EITHER

- (a) What is compound pendulum? Obtain an expression for the periodic time of compound pendulum.
 - (b) Define linear simple harmonic motion and obtain differential equation of SHM.

UWO-45290(Re) 4 (Contd.)

 (c) Solve the differential equation of damped harmonic motion and show that velocity of a particle decreases exponentially.

OR

- (p) Define the angular SHM. Show that the vibrations of bar magnet in uniform magnetic field is angular SHM.
 - (q) Show that total energy of a particle performing SHM is conserved.
 - (r) A mass of 50 gm is attached to a spring having spring constant 0.2. Determine time period of oscillation.

EITHER

- 8. (a) Obtain the resultant displacement due to superposition of two SHMs of the same frequency, acting at right angles to each other, having phase difference 'φ'. Discuss the special cases of resultant motion when phase angle is 0 and π/2.
 8
 - (b) What are ultrasonic waves? State applications of ultrasonic waves.
 4

UWO-45290(Re)

5

(Contd.)