13.	(P)	State and prove Bernoulli's theorem.	6 ·	
	(Q) Derive an equation of continuity.			
	(R)	Define angle of contact. On what factors depends ?	it 3	

First	Semester	В.	Sc.	(Part -	I)	Examination
		1S	:PE	IYSICS		

(Mechanics, Properties of Matter, Waves and Oscillations)

P. Pages: 8

Time: Three Hours] [Max. Marks: 80

Note: (1) All questions are compulsory.

- (2) Draw neat diagrams wherever necessary.
- 1. (A) Fill in the blanks:—
 - (i) Kepler's ——law is known as law of areal velocity.
 - (ii) SI Unit of angular momentum is-
 - (iii) Damping force is directly proportional to ———.
 - (iv) Young's modulus is a property of only.
 - (B) Choose correct alternative:
 - (i) The moment of momentum is called
 - (a) Couple

	(b)	Torque			(B)	Derive an expression for twisting couple or
	(c)	Angular momentum				torque per unit twist for a cylindrical wire.
,	(d)	Impulse.				6
(ii)	Spri	ing and mass system executes.		r	(C)	Define :—
	(a)	Linear S.H.M				(i) Modulus of rigidity
	(b)	Angular S.H.M				(ii) Modulus of elasticity. 2
	(c)	Both (a) and (b)				OR
	(d)	None of the above.		•		
(iii)	S.İ.	unit of surface tension is		11:	(P)	Derive an expression for depression of a beam supported at two ends and centrally
	(a)	Dynes / cm				loaded. 6
	(b)	Dynes / cm ²			(Q)	Explain internal bending moment and external
	(c)	Newton / meter				bending moment. 6
	(d)	Newton / meter ² .				
(iv)	Bull	k modulus of elasticity is related with			EITI	HER
	cha	nge in		12.	(A)	Explain how the surface tension of liquid can
	(a)	Volume		12.		be determined by Jaeger's method. 6
	(b)	Length			(B)	Distinguish between streamline and turbulent
	(c)	Shape				flow. 4
	(d)	None of these. 2			(C)	Define coefficient of viscosity. State its S.I.
Ans	wer	in one sentence each :				unit. 2
(i)	Def	ine radius of gyration.	•			

AR-478

P.T.O.

AR-478

(C)

EITHER

- (A) Describe construction and working of Kundt's tube.
 - (B) Derive Newton's formula for velocity of sound in air.
 - (C) What are ultrasonic waves? State its industrial and Medical applications.

OR

- Obtain an expression of resultant displacement and amplitude due to superposition of two SHM along a same line.
 - (Q) Explain with neat labeled diagram Piezoelectric generator for the production of the ultrasonic waves.
 - (R) What are the necessary conditions for interference of sound waves.

EITHER

- 10. (A) Explain :-
 - Angle of twist
 - (ii) Angle of shear

- (ii) State Hooke's law of elasticity.
- (iii) What is simple pendulum?
- (iv) Define angle of contact.

EITHER

- (A) State and prove Kepler's third law of planetary motion.
 - (B) Discuss variation of acceleration due to gravity with:
 - The altitude
 - (ii) The depth.

State and explain Newton's law of gravitation.

- OR
- Derive an expression for gravitational potential 3. and Intensity due to solid sphere at a point inside the solid sphere.
 - (Q) State and prove Gauss theorem in gravitation.

(R) Define :—

Gravitational potential

AR-478

P.T.O.

AR -478

(ii) Gravitational field Intensity	(ii)	Gravitational	field	Intensity
------------------------------------	------	---------------	-------	-----------

(iii) Gravitational field.

-

EITHER

4. (A) State and prove theorem of parallel axes.

5

- (B) Derive an expression for the M.I. of solid cylinder about an axis passing through its centre and perpendicular to its length. 5
- (C) Calculate the M. I. of disc about the transverse axis through centre of disc whose radius is 10 cm and mass 49.2 kg. 2

OR

- 5. (P) State and prove law of conservation of angular momentum.
 - (Q) Derive an expression for M. I. of solid sphere about its diameter.
 - (R) Find the M.I. of thin circular disc about an axis passing through it center and perpendicular to its plane.

EITHER

- (A) State differential equation of S.H.M. Obtain an expression for the acceleration, velocity and displacement.
 - (B) Show that angular acceleration is directly proportional to the displacement in case of compound pendulum, also find its periodic time.

OR

7. (P) Obtain an expression for K.E. and P. E. of particle performing S.H.M. and discuss the variation of K.E. and P.E. with displacement.

6

(Q) Explain:

- (i) Damped oscillation
- (ii) Forced oscillation

(iii) Resonance.

3

(R) Obtain the differential equation for damped harmonic oscillations.

P.T.O.