AU-25

B.Sc. (Part-I) Semester-I Examination 1S: STATISTICS

Time: Three Hours] [Maximum Marks: 80

			Note :— All question	is are compi	ulsory.		
1.	(A)	Fill	in the blanks :				
		(i)	CSO was set up in the year				
(ii) Deciles divide the series into equal parts.							
		(iii)	The probability of sure event is	·			
		(iv)	If X and Y are independent random variables then Cov (X, Y) =				
	(B)	Cho	hoose the correct alternative (MCQ):				
		(i)	Percentiles divide the series into	equal pa	rts.		
			(a) Ten	(b)	Two		
			(c) Four	(d)	Hundred		
		(ii)	Total probability is always equal to:				
			(a) Zero	(b)	Two		
			(c) One	(d)	None of the above		
		(iii)	en $E(XY) = \underline{\hspace{1cm}}$				
			(a) $E(X) + E(Y)$	(b)	$E(X)\cdot E(Y)$		
			(c) $E(X) - E(Y)$	(d)	$\frac{E(X)}{E(Y)}$		
		(iv)	The ideal measure of central tendence	y is:			
			(a) Mode	(b)	Harmonic Mean		
			(c) Geometric Mean	(d)	Arithmetic Mean	2	
VOX	3526	55	1			(Contd.)	

www.sgbauonline.com

	(C)	Answer in one sentence each:	
	(0)	(i) Explain nominal scale.	
		(ii) What is cumulant generating function?	
		(iii) What is mode?	
		(iv) Define trial.	4
2.	(A)	What do you mean by statistics? State its limitations.	4
	(B)	Explain the functions of NSSO.	. 4
	(C)	State the characteristics of ratio scale.	4
		OR	
3.	(P)	What do you mean by continuous data and discrete data?	4
	(Q)	Explain the terms primary data and secondary data.	4
	(R)	State the scope of statistics in agricultural sciences.	4
4.	(A)	Define arithmetic mean. State merits and demerits of arithmetic mean.	6
	(B)	What do you mean by classification? State the rules for classification.	6
		OR	
5.	(P)	Define Median. State its merits and demerits.	6
	(Q)	What do you mean by tabulation? Explain the various parts of a table.	6
6.	(A)	Define range and state its merits.	4
	(B)	Explain the term Kurtosis.	4
	(C)	State the characteristics of an ideal measure of dispersion.	4
		OR	
7.	(P)	Define standard deviation and state its merits.	4
	(Q)	Explain the term Skewness. State its measures.	. 4
	(R)	Obtain the relationship between central moments and raw moment.	
VOX	3520	55 2	(Contd.)

8.	(A)	State axioms of probability.	4					
	(B)							
	` '	(i) Random Experiment						
		(ii) Mutually Exclusive events,						
		with the help of examples.	4					
	(C)	Two unbiased dice are thrown. Give its sample space and find the probability that the	sum					
	` /	of the points on the dice is odd.	4					
		OR						
9.	(P)	Explain the classical approach to probability. State its limitations.						
	(Q)	Define with the help of examples:						
		(i) Exhaustive events						
		(ii) Independent events.	4					
	(R)	State and prove addition theorem of probability for two events A and B.	4					
10.	(A)	Define discrete random variable and continuous random variable. State one example of	each					
		of them.	4					
	(B)	If a and b are constants then prove that:						
		$V(aX + b) = a^2V(X).$	4					
	(C)	X is the continuous random variable having p.d.f. $f(x) = Ax$ $0 \le x \le 4$						
		Find:						
		(i) The value of constant A						
		(ii) $E(X)$.	4					
		OR						
11.	(P)	Define Mathematical expectation of random variable X and show that:						
		E[aX + b] = a E(X) + b						
		where a and b are the constants.	4					
	(Q)							
		Cov(aX, bY) = ab Cov(X, Y)						
		where a, b are the constants.	4					
	(R)	For the given probability distribution,						
		X = x : 1 2 3 4 5						
		P[X = x]: a 2a 4a 8a 16a						
		Find the value of (i) a (ii) E(X).	4					
VOX	-3520	65 3 (Cc	ontd.)					

12. (A) Define m.g.f. State and prove additive property of m.g.f.

6

(B) The following table represents that joint probability distribution of X and Y:

XY	1	2	3	4
1	1/12	2/24	1/12	1/12
0	0	2/24	3/12	1/12
1	1/12	1/12_	0	1/12_

Find:

- (i) Marginal distribution of X.
- (ii) Marginal distribution of Y.
- (iii) Conditional distribution of X given Y = 2.

6

OR

13. (P) Define Cumulant generating function. Discuss the effect of change of origin and scale on c.g.f.

6

(Q) The joint probability distribution of continuous random variables X and Y is defined as :

$$f(x, y) = A x y$$
 0 < x < 2, 0 < y < 2
= 0 otherwise

Find:

- (i) The value of A
- (ii) Marginal p.d.f. of X
- (iii) Marginal p.d.f. of Y.

- 6