B.Sc. (Part—I) Semester—II Examination CHEMISTRY (New)

Time: Three	e Hours]	[Maximum Marks: 80				
N.B. :— (1)	ALL questions are compulsory.					
(2)	Question No. 1 carries 8 marks, while each of the remaining SIX questions carries 12 marks.					
(3)	Draw diagrams and write equation v	herever necessary.				
(4)	Use of scientific calculator is allowed	d.				
1. (A) Fill	in the blanks :	½×4=2				
(i)	bond has directional characte	ers.				
(ii)	The distortion of the symmetrical election is called as	trons charge cloud of an anion by the cation				
(iii	Cyclic ether with a three membered ring is a					
(iv)	The diamagnetic substance arrange _	to magnetic field.				
(B) Che	oose the correct alternative :-	½×4=2				
(i)	The amount of energy required to remisolated gaseous atom to form cation	oving most loosely bonded electron from an is known as				
	(a) Electron affinity	(b) Oxidation energy				
	(c) Ionisation energy	(d) Oxidation potential				
(ii)	What is the shape of XeO ₄ molecule	?				
	(a) Square planer	(b) Pyramidal				
-	(c) Tetrahedral	(d) Linear				
VTM13347	1	(Contd.)				

		(iii)	Chle	orobenzene is an example of		
			(a)	Alkyl halide	(b)	Alkenyl halide
			(c)	Aryl halide	(d)	Haloalkane
		(iv)	The	unit of magnetic moment is _		
			(a)	Debye	(b)	Coulomb
			(c)	Bohr-Magneton (B.M.)	(d)	Dyne
	(C)	Ans	wer	in ONE sentence :		1×4=4
		(i)	Wha	at is the geometry of XeF4 mole	cule	?
		(ii)	Wha	at are phenols ?		
		(iii)	Wha	at is hybridization of iodine in	IF, ?	
		(iv)	Wha	at is the unit of rate constant for	or zero	o order reaction ?
				UNIT-	-I	
2.	(A)	Exp	lain	:		
		(i)	Wh	y melting point of NaCl is high	er tha	in that of CuCl?
		(ii)	Why	y Ag ^F is soluble in water where	as Ag	Cl is not ?
	(B)	What is hybridisation? What are the steps involved in hybridisation.				volved in hybridisation.
	(C)	Wha	at is	SHAB principle ? Discuss its a	pplica	ntions.
				OR		
3.	(P)	Wha	it is	Polarisation ? How does polaris	ation	affect the covalent characters of bond f
	(Q)			the need of hybridisation? Disc lisation.	uss th	e structure of SF ₆ molecule on the basis
	(R)	Exp	lain i	Franklin's theory of acid and be	ase wi	ith suitable examples.
VTM	I—133	347		2		(Contd.)

UNIT-II

4. (A) Discuss the oxidation states of oxygen family.

4

- (B) What are inter halogen compounds? Give their types with suitable examples. 4
- (C) What are non-aqueous solvents? Classify them on the basis of proton donor acceptor behaviour.

OR

5. (P) Discuss the oxidising property of halogens.

4

(Q) Discuss the electronic configuration of oxygen family (16th group).

.

- (R) Explain the following reactions in liq. NH₃:—
 - (i) Neutralisation reaction
 - (ii) Solvolysis reaction.

 $2 \times 2 = 4$

UNIT---III

- 6. (A) How will you prepare:
 - (i) Vinyl chloride from acetylene
 - (ii) Allyl chloride from propene?

 $2 \times 2 = 4$

(B) Complete the following reactions:

(ii)
$$CH_3 \longrightarrow Cl_2 \xrightarrow{\Delta} ? + ?$$

 $2 \times 2 = 4$

(C) Explain the mechanism of Pinacol-Pinacolone rearrangement reaction.

4

OR

VTM-13347

3.

(Contd.)

7.	(P)	Why chlorine in chlorobenzene is less reactive towards neucleophilic substit	ution than	
	(*)	that in benzyl chloride?	4	
	(Q)	Explain Benzyne intermediate mechanism.	4	
	(R)	How will you prepare :		
		(i) Ethylene glycol from ethylene chloride		
		(ii) 1, 2, 3-trichloropropane from glycerol.	2×2=4	
		UNITIV		
8.	(A)	How phenol is obtained from :		
		(i) Cumene		
		(ii) Aniline ?	2×2=4	
	(B)	How is diethyl ether obtained by:		
		(i) Continuous Etherification Process		
		(ii) Williamson's Synthesis?	2×2=4	
	(C)	Explain the ring opening reaction of styreneepoxide catalysed by alkali.	4	
		OR		
9.	(P)	Explain :		
		(i) Fries rearrangement reaction		
r		(ii) Reimer-Tiemann reaction.	4	
	(Q)	What happens when diethyl ether reacts with cold and hot HI.	4	
	(R)	How will you obtain:		
		(i) Ethylene oxide from ethylene		
		(ii) Styrene oxide from styrene.	2×2=4	
VTM	I—13:	347 4	(Contd.)	

UNIT-V

10. (A) Discuss the effect of temperature on magnetic susceptibility of paramagnetic, diamagnetic ferromagnetic and anti-ferromagnetic substances. (B) Differentiate between ferromagnetism and antiferromagnetism. 4 (C) Calculate the number of unpaired electrons, if the magnetic moment is 2.83 B.M. 4 OR (P) Define the terms :— (i) Dipole moment (ii) Magnetic susceptibility. 4 (O) Derive relationship between spin moment and number of unpaired electrons. (R) Discuss any two applications of magnetic moments for molecular structure determination. UNIT-VI 12. (A) Differentiate between order and molecularity. 4 (B) What is second order reaction? Derive the equation for second order rate constant, when initial concentration of both reactants are equal. (C) Describe graphical method for the determination of order of the reaction. 4 OR 13. (P) Define the terms:— (i) Energy of activation (ii) Zero order reaction. (Q) In the hydrolysis of ethyl acetate using equal concentration of ester and NaOH, the following results were obtained:

Time (min)	0	5	15	25
Vol of HCl (ml)	16.00	10.24	6.13	4.32

Show that the reaction follows second order kinetics.

4

(R) Show the time for half change of first order reaction is constant.

1050

VTM---13347

www.sgbauonline.com