B.Sc. (Part—I) Semester—II Examination 2S: CHEMISTRY (New)

Tim	ne : Ti	hree l	Hour	el	,	[Maximum Marks : 80			
1 111	10.11	in cc i	1041	» ا		[Maximum Marks : 60			
	Note :—(1)			All questions are compulsory.					
			(2)	Question No. 1 carries 8 marks. Whit carries 12 marks.	ile ea	ch of the remaining SIX questions			
			(3)	Draw diagram and write equations wh	ereve	r necessary.			
			(4)	Use of scientific calculator is allowed.					
1.	(A)	Fill	in th	e blanks :					
		(i)	The	shape of IF ₃ molecule is					
		(ii)	The	tendency of an anion to get polarize b	y cati	on is known as			
		(iii)	IUP	AC name of Glycol is					
		(iv)		temperature at which ferromagnetic ed	subst	ance behaves like paramagnetic is $\frac{1}{2} \times 4 = 2$			
	(B)	Cho	Chose the correct alternative :						
		(i)	The	acid catalysed hydrolysis of methyl acetate is:					
			(a)	First order reaction	(b)	Second order reaction			
			(c)	Third order reaction	(d)	Zero order reaction			
		(ii)	Wh	ich of the following elements can show	√-1, ·	+1, +3, +5 and +7 oxidation states?			
			(a)	Iodine	(b)	Sodium			
			(c)	Sulphur	(d)	Magnesium			
		(iii)	iii) Fluorine never show positive oxidation state because :						
			(a)	It is most electronegative element					
			(b)	Its atomic radius is very small					
			(c)	It is less reactive					
			(d)	It is nonmetal					
VOS	7.57	72		1		(Contd.)			

www.sgbauonline.com

		(iv)	Epc	oxide is also called as:					
			(a)	Oxyrane	I	(b)	Phenol		
			(c)	Catechol	I	(d)	Hydroquinone	½×4=2	
	(C)	Ans	wer:	in one sentence each:					
		(i)	Def	ine Energy of Activation.					
		(ii)	Wh	at are Chalcogens ?					
		(iii)	Wh	at is the geometry of PC	21, ?				
		(iv)	Wh	at are polar solvents?				$1\times4=4$	
					UNIT—I				
2.	(A)	Ехр							
		(i)	Sma	aller and highly charged o	cation				
		(ii)	Larg	ge and highly charged an	ion,			2×2=4	
	(B)) What is polarization? Give the applications of the concept of polarization.							
	(C)) Discuss the structure of IF, molecule on the basis of hybridization.							
					OR				
3.	(P)	Define acid and base according to Lux-Flood concept. Give its merits and demerits.							
	(Q)	What is hybridisation? Give the conditions of hybridisation.							
	(R)	Differentiate between hard and soft acid giving suitable examples.							
					UNITII				
4.	(A)	Write the electronic configuration of halogen family elements.							
	(B)	Explain the structure of XeF ₄ molecule.							
	(C)	How are solvents classified on the basis of proton donating and accepting ability.						4	
					OR				
5.	(P)	Disc	uss s	structure and bonding in	BrF, molecule.			4	
	(Q)	2) Explain the Oxidation states of Oxygen family elements.							
	(R)	What are the requirements of good solvent.						4	
VOV	3577	72			2			(Contd.)	

UNIT-III

- 6. (A) How will you prepare ethylene glycol from:
 - (i) Ethylene

(ii) Ethylene oxide.

2+2=4

- (B) What happens when:
 - (i) Chlorobenzene is heated with sodium ethoxide at 473 K.
 - (ii) Glycerol is treated with PCl₅.

2+2=4

(C) Compare the reactivity of vinyl and allyl-chloride towards nucleophilic substitution reaction.

4

OR

- 7. (P) How will you prepare:
 - (i) Aniline from chlorobenzene.
 - (ii) Tri-nitroglycerine from glycerol.

2+2=4

- (Q) How will you convert:
 - (i) Glycol to 1,4-dioxane
 - (ii) Glycerol to acrolein.

2+2=4

(R) Explain benzyne intermediate mechanism.

,

UNIT-IV

8. (A) What is epoxide? Give the synthesis of styrene oxide.

4

- (B) How will you prepare:
 - (i) Diethyl ether from ethyl alcohol
 - (ii) Ethylene oxide from ethylene.

2+2=4

(C) Complete the following reactions:

(i)
$$NH_2$$

+ $NaNO_2 + HCl \xrightarrow{273-278 \text{ K}} ? \xrightarrow{Dil. H_2SO_4} ?$

(ii) OH

$$\xrightarrow{\text{Br - CH}_2 - \text{CH - CH}_2} ? \xrightarrow{\text{473 K}} ?$$

OR

VOX—35773 3 (Contd.)

www.sgbauonline.com

9.	(P)	Explain:								
		(i) Kolbe's Carboxylation.								
		(ii) Reimer-Tiemann reaction.					2+2=4			
	(Q)	Explain ring opening reactions	of epoxide	catalyzed	by base.		4			
	(R)	Explain acidic character of phe	4							
			UNIT-	-V						
10.	(A)	Explain:								
		(i) Induced polarization.								
		(ii) Orientation polarisation.					2+2=4			
	(B)) Define and explain ferromagnetism.								
	(C)	Calculate number of unpaired electrons when $u_m = 4.9 \text{ B.M.}$								
			OR							
11.	(P)	Define:								
		(i) Curie Temperature and Curie Law								
		(ii) Polar and Non-polar mole	cule.				2+2=4			
	(Q)	Derive relation between magnetic moment and no. of unpaired electrons.								
	(R)	What are paramagnetic substances? Give their characteristics.								
			UNIT-	-IV						
12.	(A)	Explain:								
		(i) Molecularity								
		(ii) Velocity (Rate) constant. 2+2=4								
	(B)	What is second order reaction? Show that second order reaction behave as first order								
		reaction when one of the react	4							
	(C)	Explain factors affecting rate of reactions.								
			OR							
13.	(P)	Derive Kinetic equation for first order reaction.								
	(Q)									
	(R)	potassium permagnate (KMnO ₄). Calculate the velocity constant from the following data, if								
		reaction is of first order:	^	10	22	40				
		t(min)	0	10	22	40				
		Vol. of KMnO ₄ (dm ³)	25.0	20.0	15.5	9.6	4			

VOX-35773