AS-1389

## B.Sc. (Part-I) Semester-II Examination ELECTRONICS

(Digital Electronics)

| Time : T | hree  | Hours]                                           | [Maximum Marks: 80 |
|----------|-------|--------------------------------------------------|--------------------|
| N.B. :-  | (1)   | All questions carry equal marks.                 | •                  |
|          | (2)   | Draw neat sketches wherever necessary.           |                    |
| 1. (A)   | Fill  | in the blanks:                                   |                    |
|          | (i)   | CMOS stands for                                  |                    |
|          | (ii)  | A half adder has outputs.                        |                    |
|          | (iii) | The base of a number system is also called as    | •                  |
|          | (iv)  | MOD-5 counter requires no. of flip-flops.        | . 2                |
| (B)      | Cho   | ose correct alternative & rewrite the following: |                    |
|          | (i)   | PROM is memory.                                  | ,                  |
|          |       | (a) Programmable (b) Read only                   |                    |
|          |       | (c) Programmable read only (d) None              |                    |
|          | (ii)  | To avoid race around condition flip flop is      | used.              |
|          |       | (a) RS (b) JK                                    | •                  |
|          |       | (c) JKMS (d) none                                |                    |
|          | (iii) | The base of octal number system is:              |                    |
|          |       | (a) 2 (b) 4                                      |                    |
|          |       | (c) 8 (d) 16                                     |                    |
|          | (iv)  | 1's complement of 0101 is:                       |                    |
|          |       | (a) 1111 (b) 1100                                |                    |
|          |       | (c) 1010 (d) None                                | 2                  |
| VTM—133  | 56    | ·                                                | (Contd.)           |

|     | (C)   | Answer in one sentence :                                                              |       |
|-----|-------|---------------------------------------------------------------------------------------|-------|
|     | (0)   | (i) What is encoder?                                                                  |       |
|     |       | (ii) What is Astable Multivibrator?                                                   |       |
|     |       |                                                                                       |       |
|     |       | *                                                                                     | A     |
|     | EIT   | (iv) What is ROM?                                                                     | 4     |
| 2.  |       | Convert the following:                                                                |       |
| 4.  | (a)   | •                                                                                     |       |
|     |       | (i) $(1110.11)_2 = (x)_{10}$                                                          |       |
|     |       | (ii) $(031.1)_8 = (x)_{10}$                                                           | _     |
|     | d x   | (iii) $(03FF)_{16} = (x)_{10}$                                                        | 6     |
|     | (b)   |                                                                                       | 6     |
|     | OR    |                                                                                       |       |
|     | (p)   | Explain construction and working of 4-bit adder.                                      | 6     |
|     | (q)   | Explain EX-OR and EX-NOR gates with truth table and give the logic equations of both  |       |
|     | DITT  | gates.                                                                                | 6     |
|     |       | HER                                                                                   | ,     |
| 3.  | (a)   | Explain any three characteristics of Logic Families.                                  | 6     |
|     | (b)   | Prove that:                                                                           |       |
|     |       | (i) $(\overline{A} + \overline{B}) = \overline{A} \cdot \overline{B}$                 |       |
|     |       | (ii) $(A \cdot B) = A + B$                                                            | 6     |
|     | OR    |                                                                                       |       |
|     | (p)   | Explain TTL NAND gate with suitable diagram.                                          | 6     |
|     | (q)   | Explain the various types of grouping used in K.maps to reduce the logic gates.       | 6     |
|     | EIT   | HER                                                                                   |       |
| 4.  | (a)   | Draw the logic diagram of RS-flip flop and explain its working. Draw truth table.     | 6     |
|     | (b)   | Draw and explain construction and working of transistorized monostable multivibrator. | 6     |
|     | OR    |                                                                                       |       |
|     | (p)   | Draw and explain JKMS flip-flop.                                                      | 6     |
|     | (q)   | Explain JKFF. What is race around condition?                                          | 6     |
| VTM | 1—133 | 56 2 (Cor                                                                             | ntd.) |
|     |       |                                                                                       |       |

## www.sgbauonline.com

## **EITHER**

| Э. | (a) | Explain the working of SISO shift register.                                    | 6 |
|----|-----|--------------------------------------------------------------------------------|---|
|    | (b) | Explain the working of ring counter with truth table.                          | 6 |
|    | OR  |                                                                                |   |
|    | (p) | Explain working of asynchronous up counter with suitable diagram and waveform. | 6 |
|    | (q) | Explain SIPO shift register with truth table.                                  | 6 |
|    | EIT | HER                                                                            |   |
| 6. | (a) | Explain 1:4 demultiplexer in detail.                                           | 6 |
|    | (b) | Draw and explain decimal to BCD encoder with suitable diagram.                 | 6 |
|    | OR  |                                                                                |   |
|    | (p) | Explain operation of BCD to decimal decoder.                                   | 6 |
|    | (q) | Explain operation of 4:1 multiplexer.                                          | 6 |
|    | EII | THER                                                                           |   |
| 7. | (a) | State types of semiconductor memories. Explain any two types.                  | 6 |
|    | (b) | Explain the concept of memory Hierarchy.                                       | 6 |
|    | OR  |                                                                                |   |
|    | (p) | Explain primary and secondary memories.                                        | 6 |
|    | (a) | Explain volatile and non-volatile memories                                     | 6 |

www.sgbauonline.com