AS-1379

B.Sc. (Part—I) Semester—II Examination INDUSTRIAL CHEMISTRY (R/V)

Time	: Th	ree I	Hour	s]			[Maximum Ma	rks : 80		
N.B.	:	(1)	Que	puestion No. 1 is compulsory and carries 8 marks.							
		(2)	Ren	naining all question	ns carry 12 ma	rk	s.				
		(3)	Giv	Give chemical equations and draw diagrams wherever necessary.							
		(4)	Use	of scientific calcula	ator is allowed						
1. (A)	Fill	in the	e blanks :—							
		(i)	Phy	sical adsorption is o	caused by inter	n	nolecular force.	,			
		(ii)	non	is the unit oper-volatile solute and			es the concentration of t.	a solution con	sisting a		
		(iii)	The	solute rich product	of liquid-liqu	id	extraction is called as _	phase.			
		(iv)	In s	ize reduction, parti	cles of solids a	ar	e cut or broken into	pieces.	2		
(1	(B) Choose the correct alternative :										
		(i)	Milk is an example of:								
			(a)	Sol	(b)		Miscelles				
			(c)	Gel	(d)		Emulsion				
		(ii)	A pi	ropeller is an:	3						
			(a)	Axial flow, low sp	eed impeller						
			(b)	Radial flow, high s	peed impeller						
			(c)	Axial flow, high sp	eed impeller						
-			(d)	Radial flow, low sp	peed impeller						
VTM	-1334	8			ì				(Contd.)		

www.sgbauonline.com

www.sgbauonline.com

		(iii)	Wh	ich of the following state	ments wit	th respect to catalysis is no	t true ?
			(a)	A catalyst is specific in	its action		
			(b)	A catalyst is more effect	ive when	finely divided	
			(c)	Change in temperature	alters rate	of catalysis	
			(d)	A catalyst remains chan reaction	ged in ma	ass and chemical composit	ion at the end of the
		(iv)	Wh	ich one of the following is	s the mos	t effective washing techniq	ue in filter presses ?
			(a)	Simple washing	(b)	Thorough washing	
			(c)	Partial washing	(d)	Differential washing	2
	(C)	Ans	wer	in ONE sentence:			
		(i)	Stat	te Kick's law.			
		(ii)	Def	ine filtration			
		(iii)	Wh	at is catalyst deactivation	?		
-		(iv)	Wh	at do you mean by solubi	lity?		4
					UNIT-	-I	
2.	(A)	Disc	cuss s	single and multiple effect	evaporatio	on.	4
	(B)	Exp	lain l	Bubble cap plate with suit	able diagı	ram.	4
	(C)	Des	cribe	construction and working	g of agitat	ed film evaporator.	4
					OR		
3.	(P)	Exp	lain F	Plash distillation.			4
	(Q)	Give	e an a	account of simple or differ	ential dist	illation.	4
	(R)	Dra	w the	sketch of climbing film of	evaporato	r and explain it.	4
					UNIT—	II	
4.	(A)	Disc	euss į	packed column extractor.			4
	(B)	Wha	at do	you mean by single and n	nultistage	extraction? Explain.	4
	(C)	Des	cribe	percolation tank.			4
					OR		
VTN	1133	48			2		(Contd.)

www.sgbauonline.com

5.	(P)	Explain continuous countercurrent decantation.	4
	(Q)	Discuss the properties of a solvent to be used in liquid-liquid extraction.	4
	(R)	Describe construction and working of rotocel.	4
		UNIT—III	
6.	(A)	Explain the following:—	
		(i) Moisture content on wet and dry basis	
		(ii) Drying of porous solids.	6
	(B)	Give an account of Sweson-Walker crystalliser with its construction and working.	6
		OR	
7.	(P)	Discuss tray dryer with neat labelled diagram.	6
	(Q)	Describe construction and working of Oslo-Cooler crystalliser.	6
		UNIT—IV	
8.	(A)	What is Screening? Distinguish between ideal and actual screens.	4
	(B)	Give the characteristics of filter medium.	4
	(C)	Discuss jaw crusher.	4
		OR	
9.	(P)	Describe grizzly screen with diagram.	4
	(Q)	Give an account of rotary drum filter.	4
	(R)	Explain smooth roll crusher.	4
		UNIT—V	
10.	(A)	Explain turbine impellers with their types.	6
	(B)	Discuss the mixing of solids with liquids and explain banbury mixer.	6
		OR	
11.	(P)	Give an account of double arm Kneader (Kneading machine).	6
	(Q)	Describe ribbon blender with its diagram.	6
VTM	1133	48 3	(Contd.)

www.sgbauonline.com

UNIT-VI

12.	(A) Discuss any four properties of a catalyst.		4
	(B)	Explain with example :—	
		(i) Autocatalysis	
		(ii) Negative catalysis.	4
	(C)	Give the applications of gels and emulsions.	4
		OR	
13.	(P)	Explain the mechanism of adsorption.	4
	(Q)	Describe Langmuir adsorption isotherm.	4
	(R)	Give an account of adsorption theory of catalysis.	4