## B.Sc. (Part—I) Semester—II Examination MATHEMATICS

## (Vector Analysis and Solid Geometry)

Paper—IV Time: Three Hours] [Maximum Marks: 60 **N.B.**:— (1) Question No. 1 is compulsory. (2) Attempt **ONE** question from each unit. Choose correct alternative: 1. The cross product of any two non-zero vectors is a: (a) Scalar (b) Vector (c) Both Scalar and Vector (d) None of these 1 (ii) Two non-zero vectors  $\bar{a}$  and  $\bar{b}$  are parallel iff: (a)  $\overline{a} \cdot \overline{b} = 0$ (b)  $\overline{a} \times \overline{b} = 0$ (d)  $\overline{a} \times \overline{b} = -\overline{b} \times \overline{a}$ (c)  $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$ 1 (iii) The equation of osculating plane is: (b)  $(R-r) \cdot \overline{b} = 0$ (a)  $(R-r) \cdot \tilde{t} = 0$ (c)  $(R - r) \cdot \overline{n} = 0$ (d) None of these 1 (iv) A line perpendicular to both  $\bar{t}$  and  $\bar{n}$  is called: (a) tanget line (b) binormal line (c) principal normal line (d) None of these 1 (v) A vector f is solenoidal if: (b)  $\operatorname{curl} \bar{f} = 0$ (a) div  $\bar{f} = 0$ (c) div  $\bar{f} \neq 0$ (d) curl  $\bar{f} \neq 0$ 1 (vi) If  $\bar{r} = x_1 + y_1 + z_k$ , then div  $\bar{r}$  is equal to : (a) Zero (b) One (c) Two (d) Three 1 (vii) A plane section of a sphere is a: (b) Circle (a) Sphere 1 (c) Both Sphere and Circle (d) None of these (viii) The equation  $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$  represents a real sphere if: (b)  $u^2 + v^2 + w^2 > d$ (a)  $u^2 + v^2 + w^2 = d$ (d)  $u^2 + v^2 + w^2 = 0$ (c)  $u^2 + v^2 + w^2 < d$ 1

| http://www.sgbauonline.com/ |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ix)                        | In Right Circular Cylinder, the radius of the circle is the radius of the :                                                                                                                                                                                                                                                                                                                                                                   |
|                             | (a) Circle (b) Sphere                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | (c) Cylinder (d) Cone                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (x)                         | Every section of a right circular cone by a plane perpendicular to its axis is a:                                                                                                                                                                                                                                                                                                                                                             |
|                             | (a) Plane (b) Circle                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             | (c) Sphere (d) Cone 1                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UNIT—I                      |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| . (a)                       | Prove that a necessary and sufficient condition that $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \times \overline{c}$ is                                                                                                                                                                                                                                                                     |
|                             | $(\overline{\mathbf{a}} \times \overline{\mathbf{c}}) \times \overline{\mathbf{b}} = 0$ .                                                                                                                                                                                                                                                                                                                                                     |
| (b)                         | If f and g are functions of x, y, z then prove that $\frac{\partial}{\partial x} (\bar{f} \cdot \bar{g}) = \bar{f} \cdot \frac{\partial \bar{g}}{\partial x} + \frac{\partial \bar{f}}{\partial x} \cdot \bar{g}$ .                                                                                                                                                                                                                           |
| (c)                         | If $\vec{r}(t) = 5t^2\vec{i} + t\vec{j} - t^3\vec{k}$ , then prove that $\int_{1}^{2} \vec{r} \times \frac{d^2\vec{r}}{dt^2} dt = -14\vec{i} + 75\vec{j} - 15\vec{k}$ .                                                                                                                                                                                                                                                                       |
| . (p)                       | If $\overline{\mathbf{a}} = \mathbf{a}_1 \overline{\mathbf{i}} + \mathbf{a}_2 \overline{\mathbf{j}} + \mathbf{a}_3 \overline{\mathbf{k}}$ , $\overline{\mathbf{b}} = \mathbf{b}_1 \overline{\mathbf{i}} + \mathbf{b}_2 \overline{\mathbf{j}} + \mathbf{b}_3 \overline{\mathbf{k}}$ , $\overline{\mathbf{c}} = \mathbf{c}_1 \overline{\mathbf{i}} + \mathbf{c}_2 \overline{\mathbf{j}} + \mathbf{c}_3 \overline{\mathbf{k}}$ , then prove that |
|                             | $\bar{\mathbf{a}} \cdot (\bar{\mathbf{b}} \times \bar{\mathbf{c}}) = \bar{\mathbf{b}} \cdot (\bar{\mathbf{c}} \times \bar{\mathbf{a}}) = \bar{\mathbf{c}} \cdot (\bar{\mathbf{a}} \times \bar{\mathbf{b}}).$                                                                                                                                                                                                                                  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (q)                         | If $\overline{f} = 2t^2\overline{i} - t\overline{j} + 2\overline{k}$ , $\overline{g} = 7\overline{i} + t^2\overline{j} - t\overline{k}$ , then find $\frac{d}{dt}(\overline{f} \times \overline{g})$ .                                                                                                                                                                                                                                        |
| (r)                         | Prove that :                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | $(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times (\overline{\mathbf{a}} \times \overline{\mathbf{c}}) \cdot \overline{\mathbf{d}} = (\overline{\mathbf{a}} \cdot \overline{\mathbf{d}}) [\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}].$                                                                                                                                                                   |
| UNIT—II                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| . (a)                       | Show that the Serret-Frenet formulae at a point can be written in the form                                                                                                                                                                                                                                                                                                                                                                    |
| ()                          | $\bar{t}' = \bar{d} \times \bar{t}, \ \bar{n}' = \bar{d} \times \bar{n}, \ \bar{b}' = \bar{d} \times \bar{b} \text{ where } \bar{d} = \tau \bar{t} + k \bar{b} \text{ is a Darboux's vector.}$                                                                                                                                                                                                                                                |
| (b)                         | Prove that helices are the only twisted curves whose Darboux's vector has a constant                                                                                                                                                                                                                                                                                                                                                          |
| (0)                         | direction.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . (p)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (q)                         | Find the equations of the tangent to the curve $x = 3t$ , $y = 3t^2$ , $z = 2t^3$ at the point $t = 1$ .                                                                                                                                                                                                                                                                                                                                      |
| (r)                         | Find the curvature and torsion of the circular helix $x = a \cos \theta$ , $y = a \sin \theta$ , $z = c\theta$ at any point $\theta$ .                                                                                                                                                                                                                                                                                                        |
| UNIT—III                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| . (a)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             | ¢                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | along the path $x = t$ , $y = t^2$ , $z = t^3$ .                                                                                                                                                                                                                                                                                                                                                                                              |
| (b)                         | If $\bar{r} = xi + yj + zk$ then find:                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | (i) grad $ \bar{\mathbf{r}} $                                                                                                                                                                                                                                                                                                                                                                                                                 |

2.

3.

4.

5.

6.

(ii)

div.  $\bar{\textbf{r}}$ 

(iii) curl  $\bar{r}$ . 2+2+2

- 7. (p) Verify Green's theorem in the plane for  $\int_C (xy + y^2) dx + x^2 dy$ , where C is the closed curve of the region bounded by y = x and  $y = x^2$ .
  - (q) If  $\vec{f} = x^2 z \vec{i} 2y^3 z^2 \vec{j} + xy^2 z \vec{k}$ , then find div  $\vec{f}$  and curl  $\vec{f}$  at (1, -1, 1).
  - (r) Find the work done in moving a particle once around a circle C in the xy plane of radius 2 and centre (0, 0) and if the force field is given by  $f = 3xy\vec{i} y\vec{j} + 2zx\vec{k}$ .

## UNIT--IV

- 8. (a) Two spheres of radii  $r_1$  and  $r_2$  cut orthogonally. Prove that the radius of the common circle is  $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$ .
  - (b) Find the equation to the sphere which passes through the points (0, 0, 0), (0, 1, -1), (-1, 2, 0) and (1, 2, 3).
- 9. (p) Show that the spheres:

$$x^{2} + y^{2} + z^{2} + 2x - 6y - 14z + 1 = 0$$
 and  
 $x^{2} + y^{2} + z^{2} - 4x - 8y + 2z + 5 = 0$  are orthogonal.

(q) Find the equation of the sphere through the circle  $x^2 + y^2 + z^2 = 9$ , 2x + 3y + 4z = 5 and the point (1, 2, 3).

## UNIT-V

- 10. (a) Find the equation of right circular cylinder which passes through the circle  $x^2 + y^2 + z^2 = 9$ , x y + z = 3.
  - (b) Find the equation of the right circular cylinder of radius 2 and whose axis is the line

$$\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1} \, . \tag{5}$$

- 11. (p) Prove that the equation of a cone with vertex at the origin is homogeneous. 5
  - (q) Find the equation of the cone whose vertex is at the point  $(\alpha, \beta, \gamma)$  and whose generators touch the sphere  $x^2 + y^2 + z^2 = a^2$ .

