B.Sc. (Part—I) Semester—II Examination MATHEMATICS

			Paper—	IV	
		(Vector Ana	lysis & S	olid Geometry)	•
Time:	Three	[Maximum Marks: 60			
N.B. :-	- (1)	Question No. 1 is compuls	ory and a	ttempt it once only.	
	(2)	Solve ONE question from	each unit		
1. Che	oose	correct alternative of the fol			
(i)	Three vectors \overline{a} , \overline{b} , \overline{c} are coplaner iff			•	
	(a)	$\overline{\mathbf{a}} \times (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = \overline{0}$	(b)	$\overline{a} \cdot (\overline{b} \times \overline{c}) = 0$	
	(c)	$(\overline{a} \times \overline{b}) \times \overline{c} = \overline{0}$	(d)	$(\overline{a} + \overline{b}) \times \overline{c} = \overline{0}$	1
(ii)	A v	ector f is irrotational if	·		
	(a)	$div \ \bar{f} = 0$	(b)	$div \ \bar{f} \neq 0$	
	(c)	$\operatorname{curl} \ \overline{f} = \overline{0}$	(d)	None of these	1
(iii)) If ī	= $t\vec{i} + \sin t \vec{j} + (t^2 - 1)\vec{k}$, then			
		(0, 0, 1)		(0, 1, 0)	
	(c)	(1, 1, 0)	(d)	(1, 0, 1)	1
(iv)	For	any space curve, $\vec{t}' \cdot \vec{b}' = 1$			
	(a)		(b)	J	-
	(c)	kJ	(d)	-kJ	1
(v)	If r	= $\bar{r}(t)$ is equation of space	curve, th	en the curvature k	is equal to
	(a)	$\frac{\left[\dot{\bar{\mathbf{r}}} \ \dot{\bar{\mathbf{r}}} \ \dot{\bar{\mathbf{r}}}\right]}{\left \dot{\bar{\mathbf{r}}} \times \dot{\bar{\mathbf{r}}}\right ^2}$	(b)	$\frac{\dot{\bar{r}}}{ \dot{\bar{r}} }$	
	(c)	$\frac{\dot{\bar{r}} \times \ddot{\bar{r}}}{\left \dot{\bar{r}} \times \ddot{\bar{r}}\right }$	(d)	$\frac{\left \dot{\bar{\mathbf{r}}}\times\ddot{\bar{\mathbf{r}}}\right }{\left \dot{\bar{\mathbf{r}}}\right ^{3}}$	1
VTM14	186			-	(Contd.)

	(vi) If	$\bar{r} = xi + yj + zk$, then div. \bar{r} is	·						
	(a)) 3	(b) -2						
	(c)) 0	(d) -1	1					
	(vii) A	vector $\bar{\mathbf{f}}$ is solenoidal if							
	(a)) div. $\bar{f} = 0$	(b) curl $\overline{f} = \overline{0}$						
	(c)) div. grad $\bar{f} = 0$	(d) curl grad $\bar{f} = \bar{0}$	1					
	(viii) Ev	very section of right circular cone	by a plane perpendicular to its axis is						
	(a)) plane	(b) circle						
	(c)) sphere	(d) None of these	l					
	(ix) Th	ne equation $x^2 + y^2 + z^2 + 2ux + 2vy$	y + 2wz + d = 0 represent a real sphere if						
	(a)	$u^2 + v^2 + w^2 = d$	(b) $u^2 + v^2 + w^2 > d$						
	(c)	$u^2 + v^2 + w^2 < d$	(d) $u^2 + v^2 + w^2 = 0$	1					
	(x) Two non-parallel planes intersect in a								
	(a)) plane	(b) point						
	(c)) line	(d) circle	1					
UNIT—I									
2.	(a) If	vectors \vec{f} and \vec{g} are vector function	ons of t, then prove that						
		$\frac{\mathrm{d}}{\mathrm{d}t}(\overline{f}\circ\overline{g}) = \overline{f}\circ\frac{\mathrm{d}\overline{g}}{\mathrm{d}t} + \frac{\mathrm{d}\overline{f}}{\mathrm{d}t}\circ\overline{g}.$		3					
	(b) Pr	ove that $\vec{r} = \vec{a} e^{mt} + \vec{b} e^{nt}$, where \vec{a}	\overline{b} , \overline{b} are unit vectors is the solution of						
		$\frac{d^2\bar{r}}{dt^2} - (m+n)\frac{d\bar{r}}{dt} + mn\bar{r} = 0.$		3					
	(c) If	$\vec{f} = 2t^2\vec{i} - t\vec{j} + 2\vec{k}$ and $\vec{g} = 7\vec{i} + t^2\vec{j}$	$-t\vec{k}$, then find $\frac{d}{dt}(\vec{f} \times \vec{g})$.	4					

2

(Contd.)

VTM--14186

3. (p) Prove that:

$$\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{c})\overline{b} - (\overline{a} \cdot \overline{b})\overline{c}.$$

- (q) If $\overline{a} = t\vec{i} 3\vec{j} + 2t\vec{k}$, $\overline{b} = \vec{i} 2\vec{j} + 2\vec{k}$ and $\overline{c} = 3\vec{i} + t\vec{j} \vec{k}$, then evaluate $\vec{a} \cdot (\vec{b} \times \vec{c})$.
- (r) Prove that:

$$(\overline{c} \times \overline{a}) \times (\overline{a} \times \overline{b}) = [\overline{a} \ \overline{b} \ \overline{c}] \overline{a}.$$

1+5

UNIT-II

- 4. (a) State and prove Frenet-Serret formulae.
 - (b) If tangent and binormal at a point of a curve makes angle θ , ϕ respectively with fixed direction, then show that :

$$\frac{\sin\theta \, d\theta}{\sin\phi \, d\phi} = \frac{-k}{J} \, . \tag{4}$$

- 5. (p) Prove that $[\vec{r}'', \vec{r}''', \vec{r}'''] = k^3[kJ' k'J]$.
 - (q) Show that the necessary and sufficient condition that a curve to be a straight line is k = 0.
 - (r) Prove that Darboux vector $\overline{\mathbf{d}}$ has fixed direction if and only if k/J is constant. 4

UNIT-III

6. (a) Find the work done in moving a particle along the parabola y² = x in the xy plane from (0, 0) to (1, 1) if the force field is given by :

$$\bar{\mathbf{f}} = (2x + y - 7z)\mathbf{i} + (7x - 2y + 2z^2)\mathbf{j} + (3x - 2y + 4z^3)\mathbf{k}.$$

(b) Verify Green's theorem in the plane for,

$$\int_{c} (xy + y^2) dx + x^2 dy$$

Where c is the closed curve of the region bounded by y = x and $y = x^2$.

7. (p) If $\overline{F} = (3x^2 + 6y)\vec{i} - 14yz\vec{j} + 20xz^2\vec{k}$, then evaluate $\int_{c} \overline{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1)

along the path x = t, $y = t^2$, $z = t^3$.

(q) Prove that $r^n \bar{r}$ is irrotational. Find the value of n when it is solenoidal.

VTM--14186 3 (Contd.)

UNIT—IV

- 8. (a) A sphere of radius k passes through the origin and meets the axes in A, B, C. Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$. 5
 - (b) Prove that the two spheres

$$x^{2} + y^{2} + z^{2} + 2u_{1}x + 2v_{1}y + 2w_{1}z + d_{1} = 0$$
and
$$x^{2} + y^{2} + z^{2} + 2u_{2}x + 2v_{2}y + 2w_{2}z + d_{2} = 0$$
will be orthogonal if $2u_{1}u_{2} + 2v_{1}v_{2} + 2w_{1}w_{2} = d_{1} + d_{2}$.

- 9. (p) Find the equation of the sphere that passes through the circle $x^2 + y^2 + z^2 2x + 3y 4z + 6 = 0$, 3x 4y + 5z 15 = 0 and cuts the sphere $x^2 + y^2 + z^2 + 2x + 4y 6z + 11 = 0$ orthogonally.
 - (q) Two spheres of radii r₁ and r₂ cut orthogonally. Prove that the radius of the common

circle is
$$\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$$
.

UNIT-V

10. (a) Find the equation of the right circular cylinder of radius 2 and whose axis is the line

$$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}.$$

(b) Find the equation of the right circular cylinder whose radius is r and axis the line:

$$\frac{\mathbf{x} - \mathbf{x'}}{1} = \frac{\mathbf{y} - \mathbf{y'}}{\mathbf{m}} = \frac{\mathbf{z} - \mathbf{z'}}{\mathbf{n}}.$$

- 11. (p) Find the equation of a right circular cone whose vertex is (α, β, γ) , the semivertical angle α and the axis $\frac{x-\alpha}{1} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$.
 - (q) Find the equation of right circular cone whose vertex is (2, -3, 5), axis makes equal angles with the coordinate axes and semi vertical angle is 30° .