B.Sc. (Part—I) Semester—II Examination PETROCHEMICAL SCIENCE

Time: The	ree	Hours]	[Maximum Marks: 80					
N.B. : ((1)	Question No. 1 is compulsory.						
((2)	Discuss the reaction mechanism wherever necessary.						
((3)	Diagrams and chemical equations should	d be given wherever necessary.					
((4)	Illustrate your answers with neat sketches wherever necessary.						
((5)	Use pen of blue/black ink/refill only for writing the answer book.						
1. (A) F	Fill	in the blanks :	.4×½=2					
((i)	Almost 90% of the total world production of organic chemicals are of industry.						
((ii)	Methanol has a tendency to form with toluene. In steam reforming process, steam hydrocarbon ratio strictly depends upon the of the feed stock.						
((iii)							
,((iv)	Modern processes for generating synthesis gas from naphtha require t from feedstock.						
(B) (Cho	ice the correct alternative :	4×1/2=2					
((i)	The main source of important feedstock	for petrochemicals today is					
		(a) Coal (b) Molasses					
		(c) Crude oil (d) Biomass					
. ((ii)	P-xylene and M-xylene can be separated by						
		(a) Distillation (b) Fractional crystallization					
		(c) Drying (d) Extraction					
VTM—1334	19	1	(Contd.)					

		(iii)		use of secondary reformary reformer.	rmer is to conv	vert about 10%	_ still unrelated in	
			(a)	Ethane	(b)	Methane		
			(c)	Propane	(d)	Olefins		
		(iv)	The	advantage of oxo-synti	hesis is in getti	ng higher primary al	cohol from	
			(a)	Acetylenes	(b)	Olefins		
		-	(c)	Naphthalenes	(d)	Paraffins.		
	(C)	Ans	wer	the following question	s in ONE sent	ence each :	4×1=4	
		(i)		ich petrochemical indust nplex in India ?	ry is regarded as	actually the first inte	grated petrochemical	
		(ii)	In v	which case compression	n and liquefact	ion technique is sui	table ?	
		(iii)	Wha	at is the use of second	ary reformer in	natural gas steam	reforming process?	
		(iv)	Wha	at is the advantage of	oxo-synthesis p	process ?		
2.	(A)	Wha	at wa	as clearly mentioned in	the Prof. G.P.	Kane committee re	port? 2	
	(B)	natu	ıral g	ain source of important gas." Explain with sche from these sources.		-	-	
					OR			
3.	(P)	Wha	at is	the outcome of choosi	ng active catal	ysts in fertilizer ind	ustry? 2	
	(Q)	rela	ted, t	with of petrochemicals the advances made in the suitable examples.		-	-	
4.	(A)	Wha	at are	e the most common in	purities presen	at in petroleum gase	s? 2	
	(B)			roperties the most desir should posses?	able liquid des	iccants used for com	mercial dehydration 4	
	(C)			y the feedstocks for piscuss this classification			ne basis of existing	
	OR							
VTM	I—133	349			2		(Contd.)	

2.

5.	(P)	Name the various mechanical impurities present in petroleum gases. Also m their sources.	ention 3
	(Q)	Mention the important properties that solid desiccants used for natural gas dehyd should possess.	Iration 4
	(R)	Name the various solvents that can be used for H ₂ S removal from sour gases mention their relative capacity to remove H ₂ S from the sour gases.	. Also
6.	abo	rene is obtained as byproduct during cracking of naphtha for ethylene and it consout 4-6%. Discuss the separation of styrene from this fraction by extractive distidetail with neat sketch of flow diagram.	
		OR	
7.	tolu	y thermally cracked or catalytically reformed stocks contain at least 18% of toluene uene is separated by azeotropic distillation. Discuss this process in detail with etch of flow diagram.	
8.	(A)	Why the end use of synthesis gas must be well known before hand?	2
	(B)	Why threshold concentration of 0.1 ppm weight of sulfur should not exceed feedstock for steam reforming process?	in the
	(C)	Discuss the reactivity of hydrocarbons in steam reforming process in detail.	7
		OR	
9.	(P)	Why it is necessary that certain degree of conversion at temperature 650—700°C is essential for natural gas reforming?	below 2
	(Q)	Why high temperature and high ratio of steam to carbon is required in natur steam reforming process ?	al gas
	(R)	"Increase in molecular weight of feedstock, increases the reactivity rapidly." E	xplain
		in detail with reference to steam reforming.	7
VT!	VI13	3349 3	(Contd.)

www.sgbauonline.com

- (A) Name the various technologies for coal gasification processes along with the recent developments in these processes.
 - (B) Coal gasification process is based on the reaction of coal in the form of coke with steam and oxygen (air). Mention the reactions involved in this process along with their heat requirements.

OR

- Discuss the natural gas steam reforming process in detail with neat sketch of flow diagram and process parameters involved.
- 12. (A) What are the various uses of synthesis gas ?
 - (B) Name the various chemicals based on the carbon monoxide alongwith the chemical reactions involved.

OR

- 13. (P) Syngas appears to have bright future in the production of both bulk and fine chemicals.Name some of the syngas based technologies.
 - (Q) Discuss recent developments in methanol production and also mention its applications.

8