B.Sc. (Part—I) Semester—II Examination PHYSICS

(Kinetic Theory, Thermodynamics and Electric Currents)

Time : Three Hours] [Maximum Marks :										
N.B. :— (1) ALL questions are compulsory.										
	((2)	Dra	w neat and well labelled diagra	ams '	wherever necessary.				
1. (A)) F	Fill i	in the blanks:—							
	(i)	The	The change in entropy for reversible cycle is						
	(ii)	Cur	rent density is a quant	ity.					
	((iii)	The	phenomenon of diffusion is d	ue to	the transport of				
	((iv)	S.I.	unit of inductance is						
(B)) (Cho	ose t	he correct alternative :			2			
	(i)	The	The phenomenon of thermal conductivity is due to the transport of:						
			(a)	Energy	(b)	Mass				
			(c)	Momentum	(d)	Electrons				
	((ii)	Dur	ing isothermal process:						
			(a)	P is constant	(b)	V is constant				
			(c)	T is constant	(d)	None of these				
	((iii)) Parallel resonant circuit is known as :							
			(a)	rejector circuit						
			(b)	tank circuit						
			(c) rejector circuit as well as tank circuit							
			(d)	acceptor circuit.		•				
VTM13346					1	(Con	td.)			

www.sgbauonline.com

		(iv)	Thevenin equivalent circuit gives:		
		•	(a) Voltage equivalent source		
			(b) Current equivalent source		
			(c) Both (a) and (b)		
			(d) None of these		
	(C)	Ans	wer in one sentence :	4	
		(i)	What is transformer?		
		(ii)	State the condition for velocity selector.		
		(iii)	What is critical temperature?		
		(iv)	What is adiabatic process?		
	EIT	HER	t		
2.	(A)	Defi	ine mean free path. Show that mean free path is inversely proportional to the der	nsity. 6	
	(B)	Der	ive an expression for the viscosity of a gas on the basis of transport phenomeno	n. 6	
	OR				
3. (F	(P)	Defi	ine:		
		(i)	Frequency of Collision.		
		(ii)	Collision cross section.	2	
	(Q)	Stat	e and prove law of equipartition of energy.	5	
	(R)	Give the interpretation of temperature on the basis of kinetic theory of gases.			
	EIT	HER	t		
4.	(A)		arnot's engine works between the reservoirs at temperatures 27°C and 127°C. It also sources from hot source. Calculate the efficiency and work done in each cycle		
	(B)	B) Explain:—			
		(i)	Isobaric process		
		(ii)	Free expansion.	4	
	(C)	Stat	e and prove Carnot's theorem.	5	
VTM	<u>133</u>	46	2 (0	Contd.)	

2.

3.

4.

OR

5. (P) Show that the total change in entropy of the working substance in complete reversible process is zero. 4 (Q) Find the efficiency of Carnot's engine working between the steam point and ice point. 2 (R) Explain the S-T diagram and hence show that area of rectangle on this diagram is equal to the work done for Carnot's cycle. EITHER 6. (A) Obtain Maxwell's third thermodynamical relations: $\left(\frac{\partial T}{\partial P}\right)_{a} = \left(\frac{\partial V}{\partial S}\right)_{b}$ 4 (B) Derive Claussius-Clapeyron latent heat equation. 5 (C) Explain Intensive and Extensive variables. 3 OR 7. (P) What is Joule -Thomson effect? 3 (Q) Explain Liquefaction of helium. 5 (R) Obtain Maxwell's first thermodynamical relations $\left(\frac{\partial \Gamma}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$. 4 EITHER (A) Explain the principle, construction and working of Bainbridge Mass Spectrograph. 8. 6 (B) Explain the motion of charged particle in a uniform transverse electric field. 4 2 (C) What is an electron gun? OR

VTM--13346

9.

(P) What is velocity selector?

3

(R) Explain the motion of charged particle in a uniform transverse magnetic field.

(Q) Explain the principle, construction and working of cyclotron.

(Contd.)

2

6

4

EITHER

10.	(A)	State Kirchoff's Law.	2		
	(B)	an expression for growth of charge in C-R circuit when connected to a const of e.m.f.			
	(C)	Define :			
		(i) Current sensitivity			
		(ii) Charge sensitivity.	4		
	OR				
11.	(P)	Give the construction and theory of Ballistic Galvanometer.	6		
	(Q)	State and prove Maximum Power Transfer theorem.	6		
	EIT	HER			
12.	(A)	An alternating sinusoidal E.M.F. is applied to a circuit containing an inductance L and resistant	nce		
		R. Calculate the current at any instant in the circuit using j-operator method.	5		
	(B)	Explain, in detail, the construction and theory of an ideal transformer.	5		
	(C)	A capacitor of $0.1~\mu F$ and an inductance of $0.1~henry$ are connected in series. If resistance of the circuit is negligible. Find the frequency at which resonance takes place			
			2		
	OR				
13.	(P)	What are the energy losses in transformer?	4		
	(Q)	Discuss the series resonant circuit. What is its resonant frequency?	4		
	(R)	Find the impedance of a circuit containing resistance of 12 ohms and capacitor of 25 when frequency of the alternating emf applied is 50 C/S.	μF, 4		