[Max. Marks: 80

13. (P) Show that when an a.c. is applied through a pure capacitor, the current leads the applied alternating voltage by $\pi/2$.

(Q) Define :--

- (i) Resistance
- (ii) Reactance
- (iii) Impedance

- 3

- (R) Derive an expression for average power in an a.c. Circuit.
- (S) What is 'j' operator ?

1

(A) Fill in the blanks.

(i) The ratio L/R is called the ——— of a LR circuit.

(2) Draw neat and well labelled diagrams

Second Semester B. Sc. (Part - I) Examination

2 S - PHYSICS

Note: (1) All questions are compulsory.

wherever necessary.

(Kinetic Theory, Thermodynamics and Electric Currents)

(ii) Figure of merit of B.G. is the reciprocal of ______.

(iii) Coefficient of thermal conductivity (K) is ——— proportional to the square root of the absolute temperature of the gas.

AR-511

3100

AR-511

P. Pages: 8

Time: Three Hours

P.T.O.

(B)	Cho	Choose the correct alternative :—					EITHER			
	(i)	Mea	n Free Path 'λ' is		:	10.	(A)	Give the theory of Moving Coil Ballistic		
		(a)	Inversely proportion	al to the	,			Galvanometer. 5		
			pressure.				(B)	State and prove maximum power transfer theorem. 4		
		(b)	Directly proportions	al to the			theorem.			
			pressure.				(C)	Explain rise of current in LR circuit. 3		
		(c)) Inversely proportional to the absolute temperature.					OR		
		(d)	Both b and c.		-	11.	(P)	State and explain Thevenin's theorem. 6		
	(ii)	•	orous plug experiment e he gas	nthalpy (H)			(Q)	Explain decay of charge in series C-R circuit.		
		(a)	Increases.				(R)	State superposition theorem. 2		
		(b)	Slowly decreases.		e 'n		EITI	HER		
		(c)	Remains constant.			12.	(A)	State and explain energy losses in transformer.		
		(d)	Rapidly decreases.				(D)			
	(iii)		In equation $P_{av} = E_{rms} \times I_{rms} \times Cos \phi$ the				(B)	Define :—		
		proc	luct E_{rms} X I_{rms} is calle				(i) Apparent power.			
		(a)	Power factor.		à			(ii) Sharpness of resonance. 2		
		(b)	**				(C)	Using j-operator method, obtain an expression for the current when a sinusoidal alternating e.m.f. is applied to a circuit having capacitor		
		(c)								
		(d)	True power.					and resistor in series. 5		
AR-511			2			AR	-511	7 P.T.O.		

- (Q) Derive thermodynamic relations.
 - (i) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$
 - (ii) $\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$
- (R) What is Boyle's temperature?

EITHER

- 8. (A) Explain the motion of charged particle in a transverse magnetic field.
 - (B) What is discharge tube?
 - (C) Give the principle and working of Bain bridge mass spectrograph.

OR

- 9. (P) Explain construction and working of cyclotron.
 - (Q) State the limitations of cyclotron.
 - (R) How energy of nuclear particles can be determined from curvature of tracks, obtained from mass spectrograph.

- (iv) If R_L is load resistance and r is internal resistance of the source, the power transferred from the source to the load is maximum when
 - (a) $r > R_L$
 - (b) $r < R_L$
 - (c) $r = R_L$
 - $(d) r \neq R_L$
- (C) Answer in a one sentence.
 - (i) Define Avagadro's number.
 - (ii) What is collision-cross section?
 - (iii) Define charge sensitivity of a ballistic galvanometer.
 - (iv) State first law of thermodynamics. 4

EITHER

- 2. (A) State assumptions of kinetic theory of gases.
 - (B) Explain transport phenomenon in gases. 5
 - (C) State and prove law of equipartition of energy.

•

AR-511 6

AR-511

3

P.T.O.

_		-
•		U
•		n
٠.	,	

3.	(P)	Derive the values of critical constants Tc,	P
		and Vc of real gas in terms of constants	0
		Vander-Waal's equation.	-

- (Q) What are limitations of vander waal's equation of state?
- (R) State the effect of temperature on the thermal conductivity of the gas. 2
- (S) Show that the pressure exerted by an ideal gas is 2/3 times the mean kinetic energy per unit volume.

EITHER

- 4. (A) Define efficiency of heat engine.
 - (B) Explain construction and working of Carnot's ideal reversible heat engine. 4
 - (C) State and prove Carnot's theorem. 6

OR

 (P) Derive an expression for the work done by an ideal gas during an adiabatic process. 4

AR-511

100	T C'	
((1)	Define	•
(Q)	DOLLING	

(i) Isothermal process.

(ii) Adiabatic process.

4

- (R) Show that the thermodynamic temperature scale and the perfect gas scale of temperature are identical.
- (S) Find efficiency of Carnot's engine working between the steam point (373°K) and the ice point (273°K)?

EITHER

6. (A) Define :--

(i) Inversion Temperature.

(ii) Extensive variables.

4

- (B) Describe the method for the liquefaction of hydrogen. 6
- (C) What is the effect of change of pressure on the boiling point of a liquid?

OR

 (P) Describe the porous plug experiment and discuss its result.

AR-511

5

P.T.O.