B.Sc. Part—II Semester—III Examination BIOCHEMISTRY

		(Intermedia	ry Metabousm)		
Tin	nc : Three Ho	urs]		[Maximum Mařks : 80	
	·) All questions are compulsory 8 marks.		xcept Q. No. 1 which carries	
	(2	,	m wherever necessary.		
1.	` '	the blanks :			
		he intermediate of citric acid cy	•	7.3	
		umber of carbon atoms in cho		1/2	
		cylcarrier protein (ACP) is inve			
		ormation of glucose from non-	carbohydrate precursor i	s called as ½	
		e the correct alternative :		*	
		MP shunt (Pentose phosphate	-	1/2	
		A) Endoplasmic reticulum	(B) Cytosol		
	-	C) Mitochondria	(D) Nucleus		
		he nitrogen atom of pyrimidine			
	**	A) Glutamate	(B) Glutamate and As	•	
	•	C) Glutamine	(D) Glutamine and As	•	
		ctone bodies are synthesised in	1:	1/2	
	(/	A) Adipose tissue	(B) Liver		
	(0	C) Muscle	(D) Brain		
	(iv) β	oxidation of fatty acid requires	all the following coenzy	ymes except: ½	
	(1	A) COA	(B) FAD		
	(0	C) NAD	(D) NADP		
	(C) Answer in one sentence :—				
	(i) D	efine Glycolysis.		1	
	(ii) D	efine Ketogenesis.		1	
	(iii) V	Vhat is transamination?		1	
	(iv) D	efine hypercholesterolemia.		1	
2.	Describe in	detail reactions of glycolysis a	and add a note on its reg	gulation. 12	
	Describe in significance.	detail oxidative and non-oxid	ative phase of pentose	phosphate pathway with its 12	
3.	Describe in	detail hydrolysis of triacylglycer	ol, β-oxidation of fatty ac	eid and transport of fatty acid	
		ondrial matrix.		12	
			OR		
	Describe bi	osynthesis of Triacylglycerol, k		ATP yield from palmitate.	
		• • • • • • • • • • • • • • • • • • • •		12	

4.	(a)	Describe biosynthesis of Lecithin.	4
	(b)	Explain biosynthesis of sphingomyclin.	4
	(c)	Describe biosynthesis of phosphatidyl inositol.	4
		OR	
	(p)	Describe biosynthesis of Mevalonate from Acetyl CoA.	4
	(q)	Describe biosynthesis of Cholesterol from Farnesyl Pyrophosphate.	4
	(r)	Explain regulation of cholesterol biosynthesis.	
5.	(a)	Explain oxidative deamination and decarboxylation of amino acids.	4
	(b)	Explain the reactions of Urea cycle.	4
	(c)	Describe anabolism of Cysteine.	4
		OR .	
	(p)	Explain regulation of Urea cycle.	4
	(q)	Describe biosynthesis of tyrosine.	4
	(r)	Describe catabolism of glycine.	4
6.	(a)	Describe regulation of purine nucleotide biosynthesis.	4
	(b)	Explain how uric acid is produced from Purine nucleotide.	4
	(c)	Describe biosynthesis of UMP from carbamoyl phosphate and asparatate.	4
		OR	
	(p)	Explain biosynthesis of AMP and GMP from IMP.	4
	(q)	Describe biosynthesis of IMP from 5-aminoimidazole ribonucleotide.	4
	(r)	Explain sources of various atoms in purine and pyrimidine ring.	4
7.	(a)	Describe regulation of Heme synthesis.	4
	(b)	Explain the reactions catalyzed by heme oxygenase and biliverdin reductase.	4
	(c)	Describe formation of Porphobilinogen from glycine and succinyl CoA.	4
		OR	
	(p)	Describe in brief biochemical aspect of jaundice.	4
	(q)	Describe biosynthesis of Heme from uroporphyrinogen-III.	4
	(r)	Explain formation of urobilin and stercobilin from Biliverdin.	4