B.Sc. Part—II (Semester—III) Examination BIOCHEMISTRY

(Intermediary Metabolism)

Time: Three Hours]						[Maxin	num Marks : 80
	Not	e :	(2)	All questions are compushich carries 8 marks. Draw the well labelled d	·		No. 1
1.	(A)	Fill	in the	e blanks :			
		(i)		iversion of glyceraldehyde	3-phosphate to	o dihydroxyacetone phosp	hate is catalysed
		(ii)		coneogenesis is a reversal	of		1/2
		` '		only Ketogenic amino ac			1/2
		(iv)		elesterol synthesis is			1/2
	(B)	` '		correct alternative :			
	(-/	(i)		dation of one mole of pyr	uvate to acety	l CoA leads to the format	tion of :
		(-)		1 mole of ATP	-	2 moles of ATP	
				3 moles of ATP	` '	4 moles of ATP	1/2
		(ii)	` '	carrier of the citric acid of	` '		
		(-)	(a)	Malate	(b)	Fumarate	
			(c)	Succinate	(d)	Oxaloacetate	1/2
		(iii)	Tran	samination is a :	, ,		
		` '	(a)	Reversible process	(b)	Irreversible process	
			(c)	Both of above		None of the above	1/2
		(iv)		carbon atoms at position	4 and 5 and	N atom at position 7 of	purine base are
			(a)	Valine	(b)	Alanine	
			(c)	Glycine	(d)	Serine	1/2
VTM13380				1		(Contd.)	

www.sgbauonline.com

	(C)	Ans	swer in one sentence :	
		(i)	Define gluconeogenesis.	
		(ii)	Define decarboxylation of an amino acid.	
		(iii)	Define oxidative deamination.	
		(iv)	Why Krebs cycle is known as "TCA Cycle"?	
2.	(a)	Des	cribe chemical coupling hypothesis.	4
	(b)	Disc	cuss glycogenolysis in detail.	
	(c)	Des	cribe reactions of gluconeogenesis which are not part of glycolysis.	4
			OR	
	(p)	Des	cribe NADH and FADH2 producing steps of TCA cycle.	4
	(q)	Disc	cuss Mitochondrial ETC.	2
	(r)	Des	cribe glyoxalate bypass.	2
3.	(a)	Des	cribe ketogenesis in detail.	4
	(b)	Des	cribe biosynthesis of Triglycerides.	2
	(c)	Des	cribe β-oxidation of saturated fatty acids.	4
			OR	
	(p)	Des	cribe biosynthesis of unsaturated fatty acids.	4
	(q)	Des	cribe activation of fatty acids and its transport to mitochondria.	. 4
	(r)	Bios	synthesis of saturated fatty acids.	4
4.	Desc	ribe	in detail biosynthesis of various types of phospholipids.	12
			OR	,
	Give	brie	f account of cholesterol metabolism.	12
VTM	1133	30	2	(Contd.)

www.sgbauonline.com

5.	(a)	Describe transamination and deamination.	4
	(b)	Discuss biosynthesis of glycine.	4
	(c)	Discuss the degradation of Tyrosine.	4
		OR	
	(p)	Describe urea cycle.	4
	(q)	Describe degradation of cysteine.	4
	(r)	Describe the biosynthesis of Methionine.	4
6.	(a)	Describe salvage pathway for biosynthesis of purine nucleotide.	4
	(b)	Explain formation of 5-aminoimidazole ribonucleotide starting from glycinamide ribonu	cleotide
			4
	(c)	Describe degradation of pyrimidines.	4
		OR	
	(p)	Describe biosynthesis of UMP.	4
	(q)	Describe catabolism of purines in humans.	4
	(r)	Discuss the biosynthesis of Thymidylate nucleotide.	4
7.	Des	scribe biosynthesis of Haem in detail.	12
		OR	
	Des	cribe biosynthesis of bile pigments in detail.	12

www.sgbauonline.com