AT-339

B.Sc. (Part-II) Semester-III Examination

3S: BIOCHEMISTRY

(Intermediary Metabolism)

(Intermediary Wetabonsm)				
Time: Three Hours]	[Maximum Marks: 80			
Note:—(1) ALL questions are compulsory carries 8 marks.	and carry equal marks except Q. No. 1 which			
(2) Draw a well labelled diagram	wherever necessary.			
1. (A) Fill in the blanks:				
(i) catalyzes first reaction	of glycosis. ½			
(ii) is the main regulatory	enzyme of cholesterol biosynthesis. 4/2			
(iii) coenzyme is required i	n transamination reaction. ½			
(iv) Carnitine protein is involved in	transport of into mitochondrial matrix.			
	1/2			
(B) Choose the correct alternative :				
(i) Uric acid synthesis mainly occu	urs in : $\frac{1}{2}$			
(A) Muscle	(B) Kidney			
(C) Liver	(D) Bone Marrow			
(ii) The link between TCA cycle and Urea cycle is through:				
(A) Citrate	(B) Fumarate			
(C) Urea	(D) Oxaloacetate			
(iii) Acetyl CoA carboxylase is activated by :				
(A) Citrate	(B) Insulin			
(C) Both of the above	(D) Neither of the above			
(iv) Glycine is required for the form	nation of all the following except: 1/2			
(A) Porphyrins	(B) Creatine			
(C) Glutathione	(D) Pyrimidines			
UNW—27436(Re)	1 (Contd.)			

www.sgbauonline.com

	(C)	Answer in one sentence :	
	(()	(i) Why humans can not convert fats into carbohydrate?	1
		(ii) Define glycogenolysis.	1
		(iii) What is de novo pathway of synthesis of purines?	1
		(iv) What is anemia?	I
_			
2.	(a)	Describe regulation of glycolysis.	4
	(b)	Explain formation of succinyl CoA from Acetyl CoA and oxaloacetate in TCA	cycle. 4
	(c)	Describe in brief glycogenolysis.	4
	(0)	OR	7
	(p)	Explain in brief electron transport chain.	4
	(q)	Describe non-oxidative phase of HMP shunt.	4
	(r)	Explain regulation of TCA cycle.	4
3.	(a)	Describe biosynthesis of Palmitate from Acetyl CoA.	4
'·	(b)	Explain ATP yield from oxidation of Palmitate.	4
	(c)	Describe biosynthesis of Triacyl glycerol starting from dihydroxyacetone phosph	
	` ′		4
		OR	
	(p)	Explain role of carnitine in transport of fatty acid.	4
	(q)	Describe formation of ketone bodies from Acetyl CoA.	4
	(r)	Explain in brief β-oxidation of unsaturated fatty acids.	4
4.	(a)	Describe biosynthesis of cerebrosides.	4
	(b)	Explain regulation of cholesterol biosynthesis.	4
	(c)	Describe biosynthesis of phosphatidyl inositol.	4
		OR	
	(p)	Describe biosynthesis of cholesterol from farnestyl pyrophosphate.	4
	(q)	Describe formation of Dimethylallyl pyrophosphate from 5-phosphomevalonate.	4
	(r)	Explain biosynthesis of phosphatidic acid from glycerol.	4
UNV	N27	7436(Re) 2 (C	Contd.)

www.sgbauonline.com

5.		scribe transamination, deamination, decarboxylation of amino acids and add a note	e oi 12
		OR	
	Des	scribe biosynthesis of serine, methionine and tyrosine.	12
6.	Des	scribe biosynthesis of AMP and GMP by de novo pathway.	12
		OR	
		scribe de novo biosynthesis of UMP and CTP and add a note on salvage pathway synthesis of AMP and GMP.	for
7.	(a)	Describe biosynthesis of porphobilinogen from glycine and succinyl CoA.	4
	(b)	Describe biosynthesis of uroporphyrinogen-III from porphobilinogen.	4
	(c)	Explain formation of Bilirubin from Heme.	4
		OR	
	(p)	Explain transport of bilirubin to liver and conjugation of bilirubin with glucurona	ate.
			4
	(q)	Describe biosynthesis of Heme from Uroporphyrinogen-III.	4
	(r)	Describe formation of urobilin and stereobilin from bilirubin diglucuronate.	4

www.sgbauonline.com