AT-327

B.Sc. (Part—II) Semester—III Examination 3S: CHEMISTRY

Time	: Th	iree	Hours] [Maximum Marks : 80
Note	:	(1)	Question No. 1 is compulsory.
		(2)	Solve one question from each unit.
		(3)	Draw well labelled diagram and give equation wherever necessary.
		(4)	Use of calculator is allowed.
1. (a)]	Fill	in the blanks:
	((i)	BMO has energy than the corresponding AOs from which it is formed
	((ii)	A solution with known concentration is termed as
	((iii)	The actual arrangement of atoms in a space of optical active compound is called
			as configuration.
	((iv)	The SI unit of equivalent conductance is
(b) (Cho	ose the correct alternative :
	((i)	The total number of confirmation of ethane are
			(a) 2
			(b) 3
			(c) 4
			(d) 6
	((ii)	The number of gram moles of solute dissolved to make one kilogram of solven
			is called
			(a) As Normality
			(b) As Molality
			(c) As Molarity
			(d) As Mole Fraction
UNW	-274	24(R	E) I (Contd.

www.sgbauonline.com

		(iii)	The	total number of molecular orbitals formed in He ₂ molecule are	
			(a)	Two	
			(b)	Three	
			(c)	Four	
			(d)	Five	
		(iv)	Cell	constant is the ratio of specific and conductances.	
			(a)	Equivalent	
			(b)	Molar	
			(c)	(a) and (b) both	
			(d)	Observed	2
	(c)	Ans	wer t	the following in one sentence:	
		(i)	State	e the physical significance of Helmholtz free energy.	
		(ii)	Defi	ine Enantiomers.	
		(iii)	State	e Kohlrausch's law.	
		(iv)	Drav	w the bond structure of carboxylic group.	4
				UNIT—I	
2.	(a)	On	the b	easis of MOT, explain the structure of O ₂ -molecule.	4
	(b)		e the tals.	difference between bonding molecular orbitals and anti-bonding m	nolecular 4
	(c)	Disc	cuss 1	the shape of SF ₆ molecule on the basis of VSEPR theory.	4
				OR	
3.	(p)	Giv	e the	free electron theory to explain the metallic bond and the properties of	f metals.
					4
	(q)	Wha	at are	the postulates of MOT?	4
	(r)	Ехр	lain 1	the molecular orbital structure of co-molecule by Coulson.	4
UNW	/27	424(R	E)	2	(Contd.)

2.

3.

UNIT-II

4.	(a)	Give the classification of volumetric titration. Explain acid-base titration with suitable example.			
	(b)	Calculate the mole fraction of ethanol and water if solution contains 6 moles of ethanol and 3 moles of water.			
	(c)	Discuss the following steps involved in gravimetric estimation of Barium as Barium Sulfate :			
		(i) Digestion			
		(ii) Incineration. 4			
		OR			
5.	(p)	Define the following terms:			
		(i) Titrant			
		(ii) Indicator			
		(iii) Equivalence point			
		(iv) Molality.			
	(q)	Differentiate between co-precipitation and post-precipitation. 4			
	(r)	Calculate normality and molarity of 2dm^3 of solution containing 12g of MgSO ₄ (Mol. wt. of MgSO ₄ = 120).			
		UNIT—III			
6.	(a)	Give the reaction and mechanism of Perkin Reaction.			
	(b)	How will you prepare ?			
		(i) Benzoic acid from toluene			
		(ii) Oxalic acid from ethylene glycol. 2×2=4			
	(c)	Explain structure and acidity of carboxylic acid. 4			
		OR			
UNV	V—27	(Contd.)			

7.	(p)	What is Cannizzaro's reaction? Discuss in detail.	4
	(q)	Give the preparation of acetaldehyde from ethyl alcohol and ethylidene dichloride	e.
			4
	(r)	What happens when:	
		(i) Benzamide is hydrolysed with NaOH, followed by acidification	
		(ii) Benzoic acid is treated with C ₂ H ₅ OII and conc. H ₂ SO ₄ ?	4
		UNIT—IV	
8.	(a)	Explain E-Z system of nomenclature with an example.	4
	(b)	Why chair confirmation of cyclohexane is more stable than boat conformation.	4
	(c)	Describe the terms:	
		(i) Resolution by chemical method	
		(ii) Racemisation.	4
		OR	
9.	(p)	Explain the conformations of n-butane with energy level diagram.	4
	(q)	Assign whether the following compounds are of 'R' or 'S' form:	
		OH CL	
		(i) H COOH (ii) CL Br F	
		CH ₃ Br F	
		CN	
		(iii) $H_{C_6H_5}$ CH_3 (iv) H_{CH_3} CH_2OH	
		(iii) H CH CH, (iv) H CH C	4
		CH ₃ CH ₂ OH	
	(r)	What is geometrical isomerism? Explain with suitable example.	4
		UNITV	
10.	(a)	Explain the application of Nernst distribution law to calculate degree of association	n of
		solute.	4
	(b)	What is Gibb's free energy? Derive the equation of change in Gibb's free energ	y.
			4
	(c)	What are partially miscible liquids? Draw and explain the phase diagram of phenomena.	nol-
		water system.	4
		OR	
UNV	V·27	7424(RE) 4 (Con	ntd.)

(p)	Derive the Gibb's Duhem equation.	4	
(q)	The equilibrium constant (K_p) for the reaction $H_2(g) + S(g) \rightleftharpoons H_2S(g)$ is 20.2 atm 945°C and 9.21 atm at 1065°C. Calculate the heat of reaction $(R = 8.134 \text{ JK}^{-1})$.	at 4	
(r)	Derive Van't Hoff reaction isotherm equation.	4	
	UNITVI		
(a)	What are the different applications of viscosity measurements?		
(b)	Define:		
	(i) Equivalent conductance		
	(ii) Transport number.	4	
(c)	Explain with graph the conductometric titrations:		
	(i) HCl against NaOH		
	(ii) AgNO ₃ against KCl.	4	
	OR		
(p)	Explain the moving boundary method to determine transport number.		
(q)	Define:		
	(i) Specific conductance		
	(ii) Cell constant.	4	
·(r)	Water required 120.5 seconds to flow through a viscometer and the same volume acetone required 49.5 seconds. If the densities of water and acetone at 293 K $9.982 \times 10^2 \text{ kgm}^{-3}$ and $7.92 \times 10^2 \text{ kgm}^{-3}$ resp. If the co-efficient of viscosity of water 293 K is 10.05 Pascal second, calculate the co-efficient of viscosity of acetone at temperature.	are r at	
	(q) (r) (a) (b) (c) (p) (q)	945°C and 9.21 atm at 1065°C. Calculate the heat of reaction (R = 8.134 JK ⁻¹). (r) Derive Van't Hoff reaction isotherm equation. **UNIT—VI** (a) What are the different applications of viscosity measurements? (b) Define: (i) Equivalent conductance (ii) Transport number. (c) Explain with graph the conductometric titrations: (i) HCl against NaOH (ii) AgNO ₃ against KCl. **OR** (p) Explain the moving boundary method to determine transport number. (q) Define: (i) Specific conductance (ii) Cell constant. (r) Water required 120.5 seconds to flow through a viscometer and the same volume acetone required 49.5 seconds. If the densities of water and acetone at 293 K 9.982 × 10 ² kgm ⁻³ and 7.92×10 ² kgm ⁻³ resp. If the co-efficient of viscosity of water 293 K is 10.05 Pascal second, calculate the co-efficient of viscosity of acetone at 293 K.	

5

500

UNW-27424(RE)

www.sgbauonline.com