AR - 533

Third Semester B. Sc. (

Examination

(No

MATHEMAILO - V

(Advanced Calculus)

P. Pages: 8

Time: Three Hours]

Max. Marks: 60

Note: (1) Question No. **one** is compulsory, attempt once.

(2) Attempt one question from each unit.

- Choose the correct alternative :—
 - (i) Let $\{x_n\}$ be a Cauchy sequence of a real numbers. Then the sequence $\{\cos(x_n)\}$ is
 - (a) unbounded
 - (b) bounded but not Cauchy
 - (c) Cauchy but not bounded
 - (d) Cauchy sequence.

1

- (ii) The series $\sum x_n = \sum n^2$ is
 - (a) convergent
 - (b) divergent
 - (c) oscillatory
 - (d) none of these.

1

AR-533

P.T.O.

(iii) If
$$L$$
 nen the series $\sum x_n$ is

(a)

(b)

(m)

(c) $(II - LIP_d)'$

(d) ese.

1

Ţ

1

(iv)
$$\int_{0}^{1} 0 = \dots$$

(a) $\frac{12}{3}$
(b) $\frac{13}{3}$
(c) $\frac{14}{3}$

(v) A bounded sequence in R(a) must have at least two limits

(d) $\frac{15}{3}$.

- (b) have a convergent subsequence
- (c) has exactly one limit point
- (d) None of these.

(vi) The P-series where P=1, given by
$$\sum \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$
 is called series

(a) geometric series

	(b)	arithmatic	Ţ
	(c)	harmomic	
	(d)	convergent.	1
(vii)	The	critical points of f (x,y) are given by .	
	(a)	$f_{\mathbf{x}} = f_{\mathbf{y}}$	
	(b)	$f_{\mathbf{x}} = 0$	
	(c)	$f_y = 0$	
	(d)	$f_{\mathbf{x}} = 0 , f_{\mathbf{y}} = 0.$	1
(viii)	The	value of $\int_{1}^{2} \int_{1}^{3} dx dy$ is	
	(a)	1 1 1	
	(b)	2	
	(c)	3	
	(d)	4.	1
(ix)		erated limits of function are not equal at then	at
	(a)	limit exist at point	
	(b)	limit does not exist	
	(c)	limit is zero	
	(d)	none of these.	1

AR-533

3

P.T.O.

(x) A function f (p) is said to have absolute minimum at $P_0 \in D$ iff for all $P \in D$ satisfies the condition.

(a)
$$f(P_0) \ge f(P)$$

(b)
$$f(P_0) \le f(P)$$

(c)
$$f(P_0) = f(P)$$

(d) none of these.

1

UNIT-I

2. (a) Evaluate
$$\lim_{n \to \infty} \left[\frac{2+3.10^n}{3+4.10^n} \right]$$

2

(b) Show that the sequence $\langle S_n \rangle$ defined by

$$S_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1}$$

is monotonic and bounded.

4

(c) Define Cauchy sequence and prove that every convergent sequence of real numbers is a Cauchy sequence.

4

3. (p) If $\langle S_n \rangle$, $\langle t_n \rangle$ and $\langle u_n \rangle$ be three sequences such that

(i) $S_n \le t_n \le u_n + v$ n and

AR-533

4

- (ii) $\lim_{n\to\infty} S_n = \lim_{n\to\infty} u_n = l$, then prove that $n\to\infty$ $n\to\infty$ 1 $\lim_{n\to\infty} t_n = l$.
- (q) Show that the sequence $\langle S_n \rangle$ defined by $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ does not onverges.
- (r) Define:
 - (i) Convergent sequence,
 - (ii) Monotone sequence. 2

UNIT-II

- 4. (a) A geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges to $\frac{1}{1-x}$ for 0 < x < 1 and diverges for $x \ge 1$ prove this.
 - (b) Test the convergence of the series

(i)
$$\sum \left(\frac{n}{n+1}\right)^{n^2}$$

(ii)
$$1 - \frac{1}{3 \times 2^2} + \frac{1}{5 \times 3^2} - \frac{1}{7 \times 4^2} + \dots$$

3 + 3

AR-533

5

P.T.O.

5. (p) Let $\sum x_n$ be a positive term series such that $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = l$. Then prove that $\sum x_n$ is convergent if l < 1.

(q) Test the convergence of the series

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots$$

$$(ii) \sum \frac{n^3+a}{2^n+a}$$

UNIT - III

- 6. (a) Prove that the function f(x, y) = x + y is continuous $\forall (x, y) \in \mathbb{R}^2$.
 - (b) Using $\in -\delta$ definition of a limit of a function, prove that $\lim_{x \to 0} (x^2 + 2y) = 3$.

$$(x,y) \rightarrow (1,1)$$

3 + 3

- (c) Expand e^{xy} at the point (2,1) up to first three terms.
- 7. (p) Let f(x, y) be defined and continuous in the open region D and let $f(x_1, y_1) = Z_1$ $f(x_2, y_2) = Z_2$, $Z_1 \neq Z_2$. Then prove that for every number Z_0 between Z_1 and Z_2 , there is a point (x_0, y_0) of D for which $f(x_0, y_0) = Z_0$.

AR-533

(q) Let
$$Z=f(x,y) = \frac{y(x^2+y^2)}{y^2+(x^2+y^2)^2}$$
, Show

that f has limit 0 as $(x,y) \rightarrow (0,0)$ on a ray x = at, y = bt, but f does not have limit 0 as $(x,y) \rightarrow (0,0)$ along $y = x^2$.

- (r) Define
 - (i) Continuity ($\in -\delta$ definition)
 - (ii) Continuity on an interval. 2

UNIT-IV

- (a) A rectangular box open at the top is to have a volume of 32 CC. Find the dimension of the box requiring least material for its construction.
 - (b) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane x 2y + 2z = 9.
- 9. (p) If $x = r \cos \theta$, $y = r \sin \theta$,
 find $J = \frac{\partial (x, y)}{\partial (r, \theta)}$ and $J' = \frac{\partial (r, \theta)}{\partial (x, y)}$ and

prove that JJ' = 1.

AR-533 7 P.T.O.

(q) Find the maximum and minimum values of $x^3 + y^3 - 3axy$.

UNIT - V

- 10. (a) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx \, dy \, dz .$ 5
 - (b) Evaluate the following integral by changing the order of integration

$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dz$$

- 11. (a) Verify Stokes theorem for the vector field defined by $\overline{f} = (x^2 y^2)\overline{i} + 2xy\overline{j}$ in the rectangular region in the xy plane bounded by lines x = 0, x = a, y = 0, y = b.
 - (b) Evaluate $\iint_{S} \overline{F \cdot n} ds$ where $\overline{F} = x^{2} \overline{i} + y^{2} \overline{j} + z^{2} k$

and S is the surface of the solid cut off by the plane x+y+z=a from the first octant, by Gauss divergence theorem.

AR-533

8

6500