AR - 535

Third Semester B. Sc. (Part - II) Examination (New Course)

MATHEMATICS-VI

(Elementary Number Theory)

P. F	Pages :	•	montal y 11a	11100	<i>(1)</i>		
Time: Three Hours] [Max. Marks:							
	Note	i	Question No t once only. Attempt on		•		
1.	Cho	ose the c	orrect alte	rnative (1	mark	each):—	
	(i)		b are two			e not both	
		(a) unio	que	(b)	not, u	nique	
	•	(c) Prin	ne No.	(d)	none	of these.	
	(ii)	If x and	y are odd	i, then x ²	+y² is		
		(a) A p	erfect squ	are			
		(b) four	rth power				
		(c) not	a perfect	square			
		(d) non	e of these) :			

AR-535 P.T.O.

(iii) For any +ve integer n, there are atleast n cosecutive ————.

- (a) prime numbers
- (b) composite integers
- (c) negative integers
- (d) none of these

(iv) The quadratic residues of 7 are ———

- (a) 1, 2, 3 (b) 3, 5, 6
- (c) 1, 2, 4 (d) none of these.

(v) For a prime P; $(P-1)! \equiv ---- \pmod{P}$:

- (a) 1 (b) -1
- (c) P (d) none of these.

(vi) If P is a prime divisor of the fermat number $fn=2^{2^n}+1$, then $Op^{(2)}=$

- (a) 2^n (b) 2^{n+1}
- (c) 2^{2^n} (d) 2^{n-1}
- (vii) If P is an odd prime, then $\left(\frac{2}{P}\right) = 1$ if—
 - (a) $P \equiv \pm 1 \pmod{8}$
 - (b) $P \equiv \pm 3 \pmod{8}$

		(c)	P ≡	0 (mod	8)			
		(d)	none	of the	se.	*		,
	(viii	-		nber of f non r		-		— the
		(a)	equal	s		(b)	not equ	als
		(c)	great	er than		(d)	less tha	ın
	(ix)	For	n >	2, \phi(n)	is an	4		•
		(a)	prime	e	,	(b)	odd int	eger
		(c)	even	integer		(d)	none of	f these.
-	(x)		produ sible		ny m	conse — .	cutive in	tegers is
		(a)	(m-1)!		(b)	(m+1)!	
		(c)	m		• .	(d)	m!	10
		·		UN	ITI			
2.	(a)	prov	ve tha		are un	ique	that b > integers r < b.	
	(b)	of d	of the		ers 11 ind y	09 ar	nm, find ad 4999 a tisfy	•
AR-	535	3						P.T.O.

3.	(p)	Prove that there are no integers a , b , $n > 1$ such that $(a^n - b^n) _{(a^n + b^n)}$.
*	(q)	If $(a, b)=1$, then show that $(a+b, a-b) = 1$ or 2.
	(r)	If c is any common multiple of a and b, then show that $[a, b] c$.
		UNIT II
4.	(a)	Prove that, the number of Primes is infinite.
	(b)	Find the solution of the linear Diaphantine equation 10x+6y=110.
	(c)	Show that, for all positive integers n, $F_0F_1 - f_{n-1} = f_n-2$
5.	(P)	If a and b are relatively prime integers and d is a positive divisor of ab, then show that there is a unique pair of positive divisors d_1 of a and d_2 of b such that $d = d_1 d_2$.
	(q)	Prove that any two distinct Fermat number are relatively prime.
	(r)	Find the solution of the linear Diaphantine equation $12x + 8y = 199$.
AR -	535	4

UNITIII

6. (a) Find the remainder when the sum: $1^{5}+2^{5}+3^{5}+\cdots+200^{5} \text{ is divided}$ by 4.

relation.

- (b) Show that the congruence is an equivalence
- (c) Prove that, for a prime P, the positive integer a is its own inverse modules P iff a

 = 1 (mod P).
 3
- 7. (p) State and prove Chinese remainder theorem.
 - (q) Show that 41 divides $2^{20}-1$.
 - (r) Show that, for any integers a, b m_1 and m_2 , $a \equiv b \pmod{m_1}$ and $a \equiv b \pmod{m_2}$ iff $a \equiv b \pmod{[m_1, m_2]}$.

UNIT IV

- 8. (a) If f is a multiplicative function then show that the arithmetic function:
 - $f(n) = \sum_{d \neq n} f(d)$ is also multiplicative.

5

(b) If
$$n=p_1^{\alpha 1} p_2^{\alpha 2} - \cdots p_m^{\alpha m}$$
 then Prove that,

$$\tau(n) = (\alpha_1 + 1) (\alpha_2 + 1) - (\alpha_m + 1)$$

and

and
$$6(n) = \frac{P_1^{\alpha_1+1}-1}{P_1-1} \cdot \frac{P_2^{\alpha_2+1}}{P_2-1} \cdot \dots \cdot \frac{P_m^{\alpha_m+1}-1}{p_m-1}.$$

5

- (p) If m is a positive integer and a is an integer 9. with (a, m) = 1 then prove that $a^{\phi(m)} \equiv 1 \pmod{m}$. 5
 - (q) Prove that the mobius μ-function is 5 multiplicative.

UNIT V

(a) If P is a prime and

 $f(x) = a_n x^n + \cdots + a_1 x + a_0$ is a polynomial of degree n≥1 with integral coefficient and a_0t_p i.e. $a_0 \not\equiv 0 \pmod{p}$, then prove that f(x)≡ 0 (mod P) has at most n incongruent solutions modulo P. 5

(b) If P is an odd prime and a, b are integers with (a, p) = 1 = (b, p) then show that :

(i)
$$a \equiv b \pmod{p} \implies \left(\frac{a}{P}\right) = \left(\frac{b}{P}\right)$$

AR -535

(ii)
$$\left(\frac{a}{P}\right)\left(\frac{b}{P}\right) = \left(\frac{ab}{P}\right)$$

(iii)
$$\left(\frac{a^2}{D}\right) = 1$$

5

11. (p) Solve the quadratic congruence $x^2+7x+10 \equiv 0 \pmod{11}$

3

(q) If P is a prime number and d/(P-1), then prove that the congruence $x^d - 1 \equiv 0 \pmod{p}$ has exactly d solutions.

1

(r) If (a, m) = d > 1, then prove that m has no primitive root a.

AR-535