B.Sc. (Part—II) Semester—III Examination MATHEMATICS

(Advanced Calculus)

Paper---V

Time: Three Hours]

[Maximum Marks: 60

Note:—(1) Question No. 1 is compulsory, attempt once.

- (2) Attempt **ONE** question from each unit.
- 1. Choose the correct alternative:
 - (i) Every Cauchy sequence is:
 - (a) Unbounded

(b) Bounded

(c) Oscillatory

- (d) None of these
- (ii) The value of $\lim_{n \to \infty} \frac{4 + 3.10^n}{5 + 3.10^n}$ is:
 - (a) 4/5

(b) 0

(c) 4

- (d) 1
- (iii) If $\lim_{n\to\infty} a_n \neq 0$ then the series $\sum a_n$ is:
 - (a) Convergent

(b) Divergent

(c) Oscillatory

- (d) None of these
- (iv) Let Σa_n be a series of positive terms such that $\lim_{n\to\infty} \sqrt[n]{a_n} = \ell$; $\forall n$. Then Σa_n is convergent

if:

(a) $\ell = 1$

(b) $\ell > 1$

(c) $\ell = 0$

- (d) $\ell < 1$
- (v) If $\lim_{(x,y)\to(x_0,y_0)} f(x,y) \neq f(x_0,y_0)$ then:
 - (a) f is continuous

(b) f is continuous at (x_0, y_0)

(c) f is discontinuous

- (d) None of these
- (vi) If $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \ell$ then the iterated limits are :
 - (a) Equal to ℓ

(b) Greater than ℓ

(c) Less than ℓ

- (d) None of these
- (vii) If u = 2x y and v = x + 4y, then $\frac{\partial(u, v)}{\partial(x, y)}$ is:
 - (a) 7

(b) 8

(c) 1/8

(d) 9

2.

3.

4.

5.

(1	viii) The necessary condition for the extremu	m of f(P)	at $P_0 \in D$ is :	
	$(a) f_{x}(P_{0}) = 0$	(b)	$f_y(P_u) = 0$	
	(c) $f_x(P_0) = 0$ and $f_y(P_0) = 0$	(d)	$f_x(P_0) = 0$ or $f_y(P_0) = 0$	
(ix) The unit normal vector \vec{n} to the surface $\phi(x, y, z) = 0$ is given by :				
	(a) $\frac{\nabla \phi}{ \nabla \phi }$	(b)	$ abla \phi$	
	(c) \vec{k}	(d)	j	
(x	x) The value of $\int_{0}^{2\pi} \int_{0}^{2} dx dy dz$ is:			
	(a) 6	(b)	8	
	(c) 4	(d)	2	10
	UNIT			
(a	Show that the sequence $\langle S_n \rangle$ where $S_n = (1 + 1/n)^n$ is convergent and its limit lies in between 2 and 3.			_
(t	Prove that every Cauchy sequence of real numbers is bounded.			3
(c	Prove that $\lim_{n \to \infty} \frac{1+3+5+(2n-1)}{n^2} = 1$.			2
(r	Prove that every monotonic sequence is convergent if and only if it is bounded.			4
(0	Prove that every convergent sequence of real numbers is a Cauchy sequence. 3			3
(r	Show that the sequence .2, .22, .222, .222, is monotonic increasing and it will converge to 2/9.			
UNIT—-II				
(a	Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for $p \ge 1$ and diverges when $p = 1$.			
(b	Test the convergence of the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$			3
(c	Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$.			3
(t	Let $\sum a_n$ be a series of positive terms such that $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\ell$. Then show that $\sum_{n=1}^\infty a_n$ is			is
	convergent if $\ell < 1$ and diverges when ℓ	> 1.		4
(q	q) Test the converges of the series $\sum_{n=1}^{\infty} \frac{1}{n (\log n)}$	$\frac{1}{\log n)^p}$.		3
(r	Discuss the convergence of the series $\sum_{n=1}^{\infty}$	$\frac{1}{n!}$		3

WPZ--8259 2 (Contd.)

UNIT--III

- 6. (a) Using $\in -\delta$ definition of continuity prove that $f(x, y) = x \cdot y$ is continuous for all (x, y) in xy-plane.
 - (b) Obtain the expansion of $f(x, y) = x^2 y^2 + 3xy$ at the point (1, 2).
 - (c) Using $\in -\delta$ definition, prove that $\lim_{(x,y)\to(1,2)} (x^2 + 3y) = 7$.
- 7. (p) Expand $x^3 + y^3 3xy$ in powers of (x 2) and (y 3).
 - (q) If f(x, y) is continuous at $P_0(x_0, y_0)$ then prove that it is bounded in some nbd of $P_0(x_0, y_0)$.
 - (r) Let $f(x, y) = \frac{xy}{x^2 y^2}$. Show that simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin.

UNIT-IV

- 8. (a) Locate all critical points and determine whether a local maximum or minimum occurs at these points of $f(x, y) = x^3 2x^2y x^2 2y^2 3x$.
 - (b) Find the extreme values of $u = \frac{x}{3} + \frac{y}{4}$; subject to the condition $x^2 + y^2 = 1$.
- 9. (p) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane x 2y + 2z = 9.
 - (q) If xu = yz, yv = xz and zw = xy then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

- 10. (a) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$; by changing the order of integration.
 - (b) Evaluate $\iint_{0}^{1} \iint_{x^2}^{1-x} x \, dz dx dy.$ 5
- 11. (p) Verify Gauss divergence theorem for the function $\bar{f} = x^2\bar{i} + y^2\bar{j} + z^2\bar{k}$ and S is a surface of unit cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.
 - (q) Verify Stoke's theorem for the function $\bar{f} = y\bar{i} + z\bar{j}$ over the plane surface 2x + 2y + z = 2 in the first octant.

