AT-324

(Contd.)

B.Sc. (Part-II) Semester-III Examination

MATHEMATICS (New)

(Advanced Calculus)

Paper-V Time: Three Hours [Maximum Marks: 60 Note:—(1) Question No. 1 is compulsory, attempt once. (2) Attempt **ONE** question from each unit. Choose the correct alternative: (1) The sequence $\langle s_n \rangle$; where $s_n = r^n$ converges to zero if: 1 (a) |r| < 1(b) |r| > 1(c) | r | = 1(d) None of these (2) The value of $\lim_{n\to\infty} \frac{3^n}{2^{2n}}$ is: 1 (a) 2 (b) 1 (c) 0(d) 4 (3) Let Σa_n be a series of positive terms such that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \ell \vee_n$; then the series Σa_n is 1 convergent if: (b) l < 1(a) l = 1(d) None of these (c) l > 1(4) The series $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$ is called: 1 (a) Geometric series (b) Harmonic series (c) Arithmetic series (d) None of these

ĺ

UNW 27421

(5)	The value of $\lim_{x\to 2} \left\{ \lim_{y\to 1} (xy - 3x + 4) \right\}$	ís :	1
	(a) 4	(b)	3
	(c) I	(d)	0
(6)	The value of δ in the following expression $0 \le (x, y) - (0, 0) \le \delta \Rightarrow x^2 + y^2 \le \frac{1}{100}$		
	is:		1
	(a) $\frac{1}{100}$	(b)	$\frac{1}{10}$
	(c) 1	(d)	None of these
(7)	A function $f(p)$ is said to have absolute maximum at $P_{\sigma} \in D$ iff for all $P \in D$ satisfies the condition :		
	(a) $f(P_0) \le f(P)$	(b)	$f(P_0) = f(P)$
	$(c) f(P_0) \ge f(P)$	(d)	None of these
(8)	If $x = r \cos \theta$ and $y = r \sin \theta$ then $\frac{\partial (x)}{\partial \theta}$	$\frac{(x,y)}{(r,\theta)}$ is	s: 1
	(a) r	(b)	$\frac{1}{r}$
	(c) r ²	(d)	$\frac{1}{r^2}$
(9)	The value of $\int_0^1 \int_0^2 \int_0^3 dx dy dz$ is:		1
	(a) 6.	(b)	2
	(c) 1	(d)	3
(10) If $F = yi + xj + z^2\overline{k}$ then div \overline{F} at (1, 1, 1) is:			
	(a) 2	(b)	
	(c) 0	(d)	3

UNW - 27421 2 (Contd.)

UNIT-I

2. (a) If $\lim_{n\to\infty} s_n = \ell$ and $\lim_{n\to\infty} t_n = m$ then prove that :

$$\lim_{n\to\infty} s_n t_n = \ell m.$$

- (b) Let $\langle s_n \rangle$ be a sequence such that $\lim_{n \to \infty} s_n = \ell$ and $s_n \ge 0$, then prove that $l \ge 0$. 3
- (c) Prove that:

$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2} = \frac{1}{2}.$$

3

- 3. (p) Prove that limit of sequence if it exist is unique.
 - (q) Prove that the sequence $\langle s_n \rangle$, $s_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ is monotonic and bounded.
 - (r) Show that the sequence $\langle s_n \rangle$ defined by $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ does not converge.

UNIT-II

- 4. (a) Prove that the Geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ is converges to $\frac{a}{1-r}$ if 0 < r < 1 and diverges for $r \ge 1$.
 - (b) Test the converges of the series $\sum_{n=1}^{\infty} \frac{n}{2n^3 1}$.
 - (c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.
- 5. (p) Let Σa_n be a series of positive terms such that $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\ell$. Then show that the series Σa_n is convergent if $\ell < 1$ and diverges when $\ell > 1$.

- (q) Test the convergence of the series $\sum \left(\frac{n}{n+1}\right)^{n^2}$.
- (r) Discuss the convergence of the series $\sum \frac{1}{4^n + 1}$.

UNIT-III

- 6. (a) Prove that if limit of a function f(x, y) as $(x, y) \rightarrow (x_0, y_0)$ exist then it is unique.
 - (b) Using \in - δ definition, prove that :

$$\lim_{(x,y)\to(1,1)} (x^2 + 2y) = 3.$$

- (c) Expand $x^3 + y^3 3xy$ in powers of (x 2) and (y 3).
- (p) Using ∈-δ definition of continuity, prove that f(x, y) = x + y is continuous for all (x, y) in xy-plane.
 - (q) Prove that $\lim_{(x,y)\to(4,-1)} (3x-2y)=14$; by using $\in -\delta$ definition.
 - (r) Expand e^{xy} at the point (2, 1) upto first three terms.

UNIT--IV

- 8. (a) A rectangular box open at the top is to have a volume of 32 cubic feet. What must be the dimensions of the box if the surface area is minimum?
 - (b) Find the extreme values of $x^3 + y^3 3dxy$.
 - (c) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$; if $xy \ne 1$. State whether u and v are functionally related. If so, find the relationship.
- (p) Find the coordinates of the foot of the perpendicular drawn from the point P(6, 2, 3) to the plane z = 5x y + 2; by minimizing the square of the distance from P to any point (x, y, z) in the plane.
 - (q) Let the function f(x, y) be defined and continuous on an open region D of xy-plane. If f(x, y) has local maximum or minimum at $P_0(x_0, y_0)$ in D and f(x, y) is differentiable

at
$$P_0$$
 then prove that $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ at $P_0(x_0, y_0)$.

www.sgbauonline.com

(r) If $x = r \cos \theta$, $y = r \sin \theta$ then find:

$$\frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{r},\theta)}$$
.

UNIT-V

- 10. (a) Evaluate $\int_0^1 \int_{x^2}^{2-x} xy dy dx$; by changing the order of integration.
 - (b) Evaluate $\iint_R x^2 dx dy dz$, where R is a cube bounded by the planes z = 0, z = a, y = 0, y = a, x = 0, x = a.
- 11. (p) Verify Gauss divergence theorem for the function $\overline{F} = y\overline{i} + x\overline{j} + z^2\overline{k}$; over the region bounded by $x^2 + y^2 = 4$; z = 0 and z = 2.
 - (q) Verify Stoke's Theorem for the function $\overline{F} = x^2\overline{i} + xy\overline{j}$ integrated round the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x 2, y = 2.

www.sgbauonline.com