B.Sc. (Part-II) Semester-III Examination **MATHEMATICS**

(Elementary Number Theory)

Paper—VI

Tim	ie : Tl	hree	Hours]		[Maximum Marks : 60					
	Not	e :-	-(1) Question No. 1 is compulsory, attern	ıpt it	once only.					
			(2) Attempt ONE question from each un	nit.						
1.	Choose the correct alternative (1 mark each):									
	(i)	The	number of multiples of 1044 that divides 1	055 i	s:					
		(a)	144	(b)	11					
		(c)	121	(d)	12					
	(ii)	The	integers of the form $2^{2^n} + 1$ are called the	e :						
		(a)	Prime number	(b)	Ramanuj number					
		(c)	Fermat number	(d)	Real number					
	(iii)	If p	is prime then $2^p + 3^p$ is:							
		(a)	Perfect square	(b)	Not perfect square					
		(c)	Positive integer	(d)	Negative integer					
	(iv)	A solution of $ax \equiv 1 \pmod{m}$ with $(a, m) = 1$ is called an:								
		(a)	Even number	(b)	Odd number					
		(c)	Modulo m	(d)	Inverse of modulo m					
	(v)	Wh	o the equation $3x + 5y = 21$?							
		(a)	0	(b)	∞					
		(c)	2	(d)	4					
	(vi)	i) The set $\{0, 1, 2, 3\}$ is complete system of residues modulo:								
		(a)	3	(b)	4					
		(c)	5	(d)	2					
	(vii) The function f is multiplicative if:									
		(a)	$f(m \cdot n) = f(m) f(n)$	(b)	f(mn) = f(n) f(m)					
		(c)	f(mn) = f(m) f(n)	(d)	None of these					
	(viii) The number of primitive roots of 53 is:									
		(a)	Zero	(b)	One					
		(c)	Twenty	(d)	Twenty Four					

		(a)	Exactly one solution	(b)	No solution			
		(c)	Infinitely many solutions	(d)	Exactly two solutions			
	(x)	The	number of solutions to the congruence x ³	≡ 3	(mod 7) is:			
		(a)	3	(b)	2			
		(c)	1	(d)	No solution	10		
			UNIT—I					
2.	(a)	Let a and b be integers that both are not zero. Then prove that a and b are relatively prime						
		iff t	here exist integers x and y such that xa +	yb =	= 1.	4		
	(b)	If (a	(a, b) = 1, show that $(a + b, a - b) = 1$ or	2.		3		
	(c)	If a		3				
3.	(p)	State	e and prove Division Algorithm Theorem.			1+3		
	(q)	If x	and y are odd then prove that $x^2 + y^2$ is a	not a	a perfect square.	3		
	(r)	Sho	w that the square of every odd integer is o	of th	e form 8m + 1.	3		
UNIT—II								
4.	(a)	Prov	ve that there are infinite number of primes.			5		
	(b)		d the gcd and lcm of a = 18,900 and b =	17.	,160 by writing each of the			
_			d b in prime factorization canonical form.			5		
5.	(p)	Prove that for all positive integer n,						
			$F_0 F_1 \dots F_{n-1} = F_n - 2.$			5		
	(q)		a and b be relatively prime integers. If d is a	_		hat there 5		
is a unique pair of positive divisors d_1 of a and d_2 of b such that $d = d_1 d_2$. UNIT—III								
6.	(2)	Sals	ve the congruence :					
v.	(a)	SOLV	$7x \equiv 3 \pmod{12}.$			1		
	(h)	If o	,	2021	that n = h (mad [m m])	4		
			\equiv b (mod m ₁) and a \equiv b (mod m ₂), then p					
	(c)	па,	b, c are integers such that $a \equiv b \pmod{m}$,	mei	i prove that $(a + c) \equiv (b + c)$	moa m). 2		
7.	(p)	inte	, r_2 ,, r_m is a complete system of residues ger, then prove that $ar_1 + b$, $ar_2 + b$,, and the full of m.					
	(q)	Iffi	is a polynomial with integral coefficients a	nd a	$a \equiv b \pmod{m}$, then prove that	::		
			$f(a) \equiv f(b) \pmod{m}$.			5		
WPZ-8266		0	2			(Contd.)		

(ix) The equation $m^2 - 33n + 1 = 0$, where m, n are integers, has :

UNIT-IV

- 8. (a) Define multiplicative function. If f is a multiplicative function and n = p₁^{a₁} · p₂^{a₂} ···· p_m^{a_m} is the prime-power factorization of the positive integer n, then prove that f(n) = f(p₁^{a₁}) · f(p₂^{a₂}) f(p_m^{a_m}).
 - (b) If n is a positive integer, then prove that $\sum_{d|n} \phi(d) = n$.
- 9. (p) Prove that for each positive integer $n \ge 1$, $\sum_{d \mid n} \mu(d) = \begin{cases} 1, & n = 1 \\ 0, & n > 1 \end{cases}$.
 - (q) Solve the linear congruences using Euler's theorem $5x \equiv 3 \pmod{14}$.

UNIT--V

- 10. (a) Let p be an odd prime and let a be an integer with (a, p) = 1 then prove that $(a/p) \equiv a^{(p-1)/2} \mod (p)$.
 - (b) Solve the quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$.
- 11. (p) Prove that if p is an odd prime, then $x^2 \equiv 2 \pmod{p}$ has solution iff $p \equiv \pm 1 \pmod{8}$.
 - (q) Find all primitive roots of p = 41.

