B.Sc. Part—II (Semester—III) Examination MATHEMATICS (New)

(Elementary Number Theory)

Paper-VI

Time	: Th	[Maximur	n Marks : 60			
	Not	e :	-(1) Question No. 1 is compulsory, atten (2) Attempt ONE question from each U		once only.	
1.	Cho	ose t	he correct alternative (1 mark each):			-
	(i)	If c	> 0 is a common multiple of a and b, the	$\operatorname{en}\left(\frac{c}{a}\right)$	$\left(\frac{c}{b}\right) = \underline{\hspace{1cm}}$	
		(a)	$\frac{c}{(a, b)}$	(b)	$\frac{c}{[a, b]}$	
		(c)	$c\left(\frac{1}{a},\frac{1}{b}\right)$	(d)	None of these	•
	(ii)	For	$n \ge 1$, there are at least $(n + 1)$ primes		2 ^{2ⁿ} .	
		(a)	Greater than		Less than	
		(c)	Equal to	(d)	None of these	
	(iii)	The	set $\{0, 1, 2, m-1\}$ is a complete syst	f residues modulo:		
		(a)	m	(b)	m-1	
		(c)	m + 1	(d)	None of these	
	(iv)	The	quadratic residues of 7 are :			
		(a)	1, 2, 3	(b)	3, 5, 6	

VTM--13366

(c) 1, 2, 4

1

(d) None of these

(Contd.)

		(v)	If P	is a prime divisor of the Fern	nat number	$F_n = 2^{2^n} + 1$, then $O_p(2) = $		
			(a)	2 ⁿ	(b)			
		•	(c)	2 ²ⁿ	(d)	2 ⁿ⁻¹		
		(vi)	The number of residues the number of non residues.					
			(a)	Equal	(b)	Not equal		
			(c)	Greater than	(d)	Less than		
		(vii)	If p	is an odd prime, then $\left(-\frac{1}{p}\right)$	=-1 if:			
			(a)	$p \equiv 1 \pmod{4}$	(b)	$p \equiv -1 \pmod{4}$		
			(c)	$p \equiv 0 \pmod{4}$	(d)	None of these		
		(viii)	If p	is a prime, then $2^p + 3^p$ is:				
			(a)	Perfect square	(b)	Not perfect square		
			(c)	Prime	(d)	Positive integer		
		$(n) \Rightarrow n \text{ is } :$						
			(a)	Prime	(b)	-ve integer		
			(c)	Positive integer	(d)	Composite Number		
		(x)	of 2 modulo 7 is:					
			(a)	1	(b)	2		
			(c)	3	(d)	7 10		
				UNI	T—I			
2.	(a)			ive integers a and b satisfying the lutions.	e equations ((a, b) = 10 and $(a, b) = 100$ simultaneously,		
	(b)	Find	the	values of x and y to satisfy th	ne equation	423x + 198y = 9. 4		
	(c)	If (a	, b) ⁻	= d, then show that $\left(\frac{a}{d}, \frac{b}{d}\right)$ =	1.	3		
VTM	I —133	66			2	(Contd.)		

(Contd.)

3.	(p)	Prove that there are no integers $a, b, n \ge 1$ such that :	
		$(a^n-b^n) (a^n+b^n)$.	3
	(q)	If $a, b \in I$, $b \neq 0$ and $a = bq + r$, $0 \leq r < b$, then prove that $(a, b) = (b, r)$.	3
	(r)	Using the Euclidean algorithm find the gcd d of the number 1109 and 4999 and then fin integers x and y to satisfy $d = 1109x + 4999y$.	d 4
		UNIT—II	
4.	(a)	If $2^m + 1$ is prime, then show that m is a power of 2, for some non negative integer K.	3
	(b)	Find the solution of the linear Diaphantine equation $15x + 7y = 111$.	4
	(c)	Show that:	
		$F_0F_1 \dots F_{n-1} = F_{n-2}$, for all positive integers.	3
5.	(p)	Prove that every positive integer $a > 1$ can be written uniquely as a product of primes, apart from the order in which the factors occurs i.e. $a = p_1 p_2 \dots p_r$, all p_i being primes.	rt 5
	(q)	If a prime $p > 3$, then show that $2p + 1$ and $4p + 1$ can not be prime simultaneously.	3
	(r)	If p is a prime and $p _{ab}$ then show that $p _a$ or $p _b$.	2
		UNIT—III	
6.	(a)	If r_1 , r_2 r_m is a complete system of residues modulo m and $(a, m) = 1$, a is a positive integer then prove that :	r
		$a_{r_1} + b$, $a_{r_2} + b \dots a_{r_m} + b$ is also complete system of residues modulo m.	5
	(b)	Solve the system of three congruences:	
		$x \equiv 1 \pmod{4}$	
		$x \equiv 0 \pmod{3}$	
		$x \equiv 5 \pmod{7}.$	5
7.	(p)	Find the solutions of $15x \equiv 12 \pmod{9}$.	ļ
	(q)	Show that 41 divide $2^{20} - 1$.	3
	(r)	Prove that $ca \equiv cb \pmod{m}$ iff $a \equiv b \pmod{\frac{m}{d}}$, where $d = (c, m)$.	}

VTM--13366

UNIT-IV

- 8. (a) Find the number of positive integers less or equal to 7200 that are prime to 3600.
 - (b) If $n = p_1^{a_1} p_2^{a_2} ... p_m^{a_m}$ is the prime-power factorization of the positive integer n, then show that:

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) ... \left(1 - \frac{1}{p_m} \right).$$

(c) If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$, then prove that :

$$\tau(n) = (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_m + 1).$$

5

- 9. (p) Prove that the möbius μ-function is multiplicative.
 - (r) If m and n are two positive relatively prime integer, then show that $\phi(m | n) = \phi(m) | \phi(n)$.

UNIT-V

- 10. (a) If a and m are relatively prime positive integers and if a is a primitive root of m, then show that the integers a, a^2 , ... $a^{\phi(m)}$ form a reduced residue set modulo m.
 - (b) Solve the quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$.
 - (c) If p is a prime number and $d|_{(p-1)}$, then prove that the congruence $x^d 1 \equiv 0 \pmod{p}$ has exactly d solutions.
- 11. (p) If p is an odd prime and a, b are integers with (a, p) = 1 = (b, p) then prove that:

(i)
$$a \equiv b \pmod{p} \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$$

(ii)
$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$$

(iii)
$$\left(\frac{a^2}{p}\right) = 1$$
.

(q) If p is a odd prime and a is a primitive root of p such that $a^{p-1} \not\equiv 1 \pmod{p^2}$, then show that for each positive integer $n \ge 2$

$$a^{p^{n-2}}(p-1) \not\equiv 1 \pmod{p^n}$$
.

VTM—13366 4 1050