B.Sc. Part—II (Semester—III) Examination MATHEMATICS (New)

(Elementary Number Theory)

Paper-VI

Time: Three Hours] [Maximum Marks: 60

Note:—(1) Question No. 1 is compulsory; attempt it once only.

- (2) Attempt ONE question from each unit.
- 1. Choose the correct alternative:
 - (i) The product of any m consecutive integers is divisible by:
 - (a) (m + 1)!

(b) (m-1)!

(c) m!

- (d) $\frac{m}{2}$!
- (ii) If c > 0 is common divisor of a and b, then $\left(\frac{a}{c}, \frac{b}{c}\right) =$
 - (a) $\frac{(a, b)}{c}$

(b) $\frac{[a, b]}{c}$

(c) $\frac{c}{(a, b)}$

- (d) $\frac{c}{[a, b]}$
- (iii) The conjecture "Every odd integer is the sum of at most three primes" is given by :

. 1 .

(a) Euler

(b) Goldbach

(c) Eratothenes

- (d) None of these
- (iv) If x > 0, y > 0 and x y is even, then $x^2 y^2$ is divisible by :
 - (a) 3

(b) 4

(c) 5

- (d) 7
- (v) If n > 2 is a positive integer, then:

$$1^3 + 2^3 + 3^3 + 4^3 + ... + (n-1)^3 \equiv$$

(a) 0 (mod n)

(b) 1 (mod n)

(c) 2 (mod n)

(d) None of these

VOX-35281

(Contd.)

	(vi)	The set {0, 1, 2, 3} is complete system of residues modulo:						
		(a)	3	(b)	4			
		(c)	5	(d)	2			
	(vii)	The	function f is multiplicative, if:					
		(a)	$f(mn) = f(m) \mid f(n)$	(b)	f(mn) = f(n) f(m)			
		(c)	f(mn) = f(m) f(n)	(d)	None of these			
	(viii)) If n	$t = 18$, then the pair of $\tau(18)$ and $\sigma(18)$) is :				
		(a)	(6, 39)	(b)	(6, 40)			
		(c)	(7, 93)	(d)	(7, 92)			
	(ix)	If C	$O_m(a) = n$, then $O_m(a^k) =$					
		(a)	$\frac{m}{(m, k)}$	(b)	n (m, n)			
		(c)	$\frac{n}{(n, k)}$	(d)	None of these			
	(x)	The	e quadratic residues of 7 are :					
		(a)	(2, 3, 4)	(b)	(3, 5, 6)			
		(c)	(1, 2, 4)	(d)	None of these	10		
			UNIT-	-Ţ				
2.	(a)	Find the gcd of 275 and 200 and express it in the form 275 $x + 200$ y.						
	(b)	State and prove the division algorithm theorem.						
	(c)	If $(a, b) = d$, then show that $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.				2		
3.	(p)	If a, b \in I, b \neq 0 and a = bq + r 0 \leq r \leq b, then show that (a, b) = (b, r).						
	(q)	For positive integer a and b, prove that :						
			(a, b) [a, b] = ab.			3		
	(r)	Pro	ve that there are no integers a, b, n >	1 such	that $(a^n - b^n) \mid (a^n + b^n)$.	3		
		ę						
VO)	VOX-3528		2			(Contd.)		

UNIT—II

4.	(a)	Prove that every positive integer greater than one has at least one prime divisor.	5
	(b)	Prove that the Fermat number Γ_5 is divisible by 641 and hence it is composite.	5
5.	(p)	Find the solution of the linear Diaphantine equation $10x + 6y = 110$.	5
	(q)	If P _n is the n th prime number, then prove that:	
		$P_n \leq 2^{2^{n-1}}$.	5
		UNIT—III	
6.	(a)	Show that congruence is an equivalence relation.	5
	(b)	Find the solution of $140x \equiv 133 \pmod{301}$.	5
7.	(p)	If $a \equiv b \pmod{m}$, then prove that $a^n \equiv b^n \pmod{m}$, $\forall n \in N$.	5
	(q)	Solve the system of three congruences:	
		$x \equiv 1 \pmod{4}, x \equiv 0 \pmod{3}, x \equiv 5 \pmod{7}.$	5
		UNIT—IV	
8.	(a)	If m is a positive integer and a is an integer with $(a, m) = 1$, then prove that $a^{\phi(m)} \equiv 1 \pmod{n}$	m). 5
	(b)	If n is a positive integer, then prove that:	
		$\sum_{d n} \phi(d) = n$	5
9.	(p)	Prove that the Möbius r-function is multiplicative.	4
	(q)	For $n \ge 2$, prove that $\phi(n)$ is an even integer.	3
	(r)	Find the value of $\tau(1800)$ and $\sigma(1800)$.	3
		UNIT—V	_
10.		If $O_m(a) = n$, then prove that $a^k \equiv 1 \pmod{n}$ iff $n \mid k$, $\forall k \in N$.	3
		If $(a, m) = d > 1$, then prove that m has no primitive root a.	3
	(c)	If p is a prime number and dip – 1, then prove that the congruence $x^d - 1 \equiv 0 \pmod{p}$ exactly d solutions.	nas 4
11.	(p)	Find all the primitive roots of $p = 17$.	5
	(q)	Show that the congruence $x^2 \equiv a \pmod{p}$ has either no solutions or exactly two incongruence solutions modulo p.	ent 5
VOX	352	81 3	775

www.sgbauonline.com

www.sgbauonline.com