AT-325

B.Sc. (Part-II) Semester-III Examination

MATHEMATICS (New)

(Elementary Number Theory)

Paper—VI

Time: Three Hours] [Maximum Marks: 60 **Note**:—(1) Question No. 1 is compulsory. Attempt it at once only. (2) Attempt **ONE** question from each unit. 1. Choose the correct alternative (1 mark each): 10 (1) If c > 0 is common divisor of a and b, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is equal to : (a) $\frac{(a,b)}{c}$ (b) $\frac{[a,b]}{c}$ (c) $\frac{c}{(a,b)}$ (d) $\frac{c}{[a,b]}$ (2) The product of any m consecutive integers is divisible by: (b) (m-1)!(a) (m + 1)! (d) $\left(\frac{m}{2}\right)!$ (c) m! (3) If x > 0, y > 0 and x - y is an even, then $(x^2 - y^2)$ is divisible by : (a) 3 (d) 7(c) 5 (4) If n > 2 is a positive integer, then $1^3 + 2^3 + \dots + (n-1)^3 =$ (a) 0 (mod n) (b) 1 (mod n) (c) 2 (mod n) (d) None of these UNW -- 27422 1 (Contd.)

(5)	If $(a,b) = 1$ then integers a	and bara :		
(5)	If (a, b) = 1 then integers a (a) Prime		Relatively Primes	
	(c) Compositive	, ,	None of these	
(6)	An integer 'r' is root of f(x)			
(0	(a) $f(r) \equiv 1 \pmod{p}$		$(r) \equiv 0 \pmod{p}$	
	(c) $f(r) \equiv 2 \pmod{p}$		$f(r) \equiv p \pmod{2}$	
(7				
()	(a) 10	(b) 2		
	(c) 11	(d) 2		
(8	The congruence $x^n \equiv 2 \pmod{\frac{n}{2}}$			
, =	(a) $n = 5$	(b) n		
	(c) $n = 6$	(d) n	1 = 8	
(9) If p is a quadratic residue of	f an odd prime q, th	hen q is a :	
	(a) quadratic residue of p	(b) q	quadratic residue of q	
	(c) prime	(d) re	residue of p	
(1	0) By Fermat's theorem when 8	3 ¹⁰³ is divided by 10	3, the remainder is:	
	(a) 103	(b) 8	3	
	(c) 9	(d) 1	0	
		UNIT—I		
2. (a) If x and y are odd, prove th	at $x^2 + y^2$ is not a p	perfect square.	4
(b	Prove that, if c a and c b, then c (a, b).			3
(c) Find the values of x and y t	o satisfy the equation	on $423x + 198y = 9$.	3
3. (p	If $(a, b) = 1$, then prove that	t (ac, b) = (c, b).		4
(9) For positive integers a and b	o, prove that :		
	(a, b) [a, b] = ab.			
(r) Find :			
	(5325, 492).			3
UNW-	27422	2		(Contd.

www.sgbauonline.com

UNIT-II

4.	(a)	Prove that every positive integer greater than one has at least one prime divisor.	4		
	(b)	Prove that:			
		$(a^2, b^2) = c^2 \text{ if } (a, b) = c.$	3		
	(c)	If P_n is the n^{th} prime number then show that :			
		$P_n \leq 2^{2^{n+1}}.$	3		
5.	(p)	If m and n are distinct non-negative integers, then prove that $(F_m, F_n) = 1$.	5		
	(q)	Find the solution of the linear Diophantine equation:			
		10x + 6y = 110.	5		
		UNIT—III			
6.	(a)	Prove that congruence is an equivalence relation.	5		
	(b)	Show that 41 divides $2^{20} - 1$.	5		
7.	(p)	Solve the system of three congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$ and $x \equiv 2 \pmod{5}$	7).		
			5		
	(q)	If f is a polynomial with integral coefficients and $a \equiv b \pmod{m}$, then prove that	:		
		$f(a) \equiv f(b) \pmod{m}.$	5		
		UNIT—IV			
8.	(a)	If p is a prime and k is a positive integer, then prove that $\phi(p^k) = p^k \left(1 - \frac{1}{p}\right)$.	5		
	(b)	If m is a positive integer and a is an integer with $(a, m) = 1$, then prove that:			
		$a^{\phi(m)} \equiv 1 \pmod{m}.$	5		
9.	(p)		4		
	(q)	Find the value of $\phi(300)$.	3		
	(r)	Find the value of $\tau(1800)$ and $\sigma(1800)$.	3		
1.0	, .	UNIT—V	_		
10.		If $(a, m) = d > 1$, then prove that m has no primitive root of a.	5		
		Prove that if r is a quadratic residue modulo $m > 2$, then $r^{\phi(m)/2} \equiv 1 \pmod{m}$.	5		
11.	(p)	Let a be an odd integer, then prove that $x^2 \equiv a \pmod{4}$ has a solution if and only	-		
		$a \equiv 1 \pmod{4}.$. 5		
	(q)	q) If $m > 2$ and $n > 2$ are the integers with $(m, n) = 1$, then prove that mn has no primitive			
		roots.	5		

3

UNW-27422

www.sgbauonline.com